Data-Driven Algorithms for Optimal Decision Making in Logistics and Supply Chain Management
A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "Mathematics and Computer Science".
Deadline for manuscript submissions: 31 May 2025 | Viewed by 6353
Special Issue Editors
Interests: data science; predictive and prescriptive analytics; supply chain analytics; logistics and supply chain management; stochastic models; algorithms and optimization
Special Issues, Collections and Topics in MDPI journals
Interests: reverse logistics; sustainable logistics; optimization; simulation; smart logistics in Industry 4.0/5.0; digital logistics twin
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
In today's dynamic and ever-evolving business landscape, logistics and supply chain management have become increasingly intricate, necessitating efficient decision-making processes to ensure seamless operations for goods, information, and resources. Leveraging the transformative potential of Industry 4.0 technologies, an unprecedented abundance of data becomes available, presenting unique opportunities to derive valuable insights and intelligent decision-making in logistics and supply chain management. Mastering the art of harnessing the available data to comprehend past events, monitor current happenings, predict future trends, and execute optimal decisions has emerged as a key competitive advantage for companies across industries. Data analytics, particularly predictive analytics and prescriptive analytics, play pivotal roles in addressing the dynamic and uncertain business environments prevalent in logistics and supply chain management. By integrating cutting-edge technologies and data-driven methodologies, this field now faces unprecedented opportunities and challenges.
The primary goal of this Special Issue is to curate groundbreaking research on data-driven algorithms and their practical applications in enabling efficient decision-making within logistics and supply chain management. We invite original contributions that delve into the theoretical, methodological, and practical aspects of data-driven algorithms, with a special focus on their profound influence on optimal decision-making processes across various domains within logistics and supply chain management. This Special Issue welcomes exemplary contributions from both academia and industry, centered on data-driven algorithms for optimal decision-making in logistics and supply chain management. We are encouraging the submission of original papers encompassing a wide array of topics, including, but not limited to:
- Autonomous warehouse systems: Exploring advanced automation techniques to optimize warehouse operations and enhance overall efficiency.
- Big data analytics: Unveiling the hidden treasures in vast data sets, empowering businesses to make data-backed optimal decisions.
- Consumer behavior modeling and prediction: Utilizing data-driven approaches to better understand and anticipate consumer behavior patterns.
- Data-driven sales & operations planning (S&OP): Enhancing the planning process through data-backed insights to optimize sales and operations coordination.
- Digital supply chain management: Examining the pivotal role of digital technologies in revolutionizing supply chain operations.
- End-to-end supply chain integration and optimization: Addressing challenges and opportunities in achieving comprehensive supply chain optimization.
- Intelligent demand forecasting: Implementing AI-driven forecasting techniques for more accurate demand predictions.
- Intelligent manufacturing systems: Integrating data-driven intelligence into manufacturing processes for enhanced efficiency and adaptability.
- Intelligent transportation systems: Leveraging data analytics to optimize transportation operations and logistics.
- Inventory track and trace: Implementing real-time tracking solutions to optimize inventory management.
- Learning algorithms: Incorporating learning algorithms to develop intelligent systems capable of adaptability and continuous improvement.
- Mathematical models: Utilizing mathematical models to provide a rigorous foundation for decision-making processes.
- Predictive maintenance systems: Utilizing predictive analytics to optimize maintenance operations and minimize downtime.
- Predictive inventory management and optimization: Optimizing inventory levels based on predictive analytics to reduce costs and improve responsiveness.
- Route optimization in transportation and distribution: Applying data-driven algorithms to optimize route planning and delivery logistics.
- Supplier selection intelligence: Employing data-driven methods for optimal supplier selection and management.
- Sustainable supply chain management: Investigating how data-driven optimization can support environmentally responsible supply chain practices.
Dr. Xue-Ming Yuan
Dr. Hao Yu
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- big data analytics
- data-driven algorithms
- optimal decision making
- intelligent systems
- learning algorithms
- mathematical models
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.