molecules-logo

Journal Browser

Journal Browser

Photocatalytic Materials and Photocatalytic Reactions

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Photochemistry".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 30421

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
Interests: photocatalysis; artificial photosynthesis; hydrogen evolution; selective oxidation; low-dimensional nanomaterials; CO2 reduction; N2 fixation

Special Issue Information

Dear Colleagues, 

Photocatalysis as one of the most promising strategies to address the severe issues of environment and energy has attracted extensive and ongoing attention. Designing advanced photocatalytic materials with expected performance and exploring green photocatalytic reactions with carbon neutrality are significant for sustainability. Low-dimensional nanomaterial is a rising star in photocatalysis due to the unique and fascinating properties of materials such as inorganic nonmetallic materials, MOFs, LSPR materials, various nanocomposites, etc. This Special Issue focuses on designing advanced photocatalysts, understanding their structure-dependent properties, and seeking to exploit them in the fields of energy conversion, pollutant degradation, artificial photosynthesis, organic synthesis, etc.

Prof. Dr. Sugang Meng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalysts
  • carbon neutral
  • charge carrier separation
  • photocatalytic mechanism
  • photoredox reaction
  • nanocomposites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (23 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

14 pages, 5450 KiB  
Article
First Principle Study on the Z-Type Characteristic Modulation of GaN/g-C3N4 Heterojunction
by Meng-Yao Dai, Xu-Cai Zhao, Bo-Cheng Lei, Yi-Neng Huang, Li-Li Zhang, Hai Guo and Hua-Gui Wang
Molecules 2024, 29(22), 5355; https://doi.org/10.3390/molecules29225355 - 14 Nov 2024
Viewed by 347
Abstract
This study investigates the stability, electronic structure, and optical properties of the GaN/g-C3N4 heterojunction using the plane wave super-soft pseudopotential method based on first principles. Additionally, an external electric field is employed to modulate the band structure and optical properties [...] Read more.
This study investigates the stability, electronic structure, and optical properties of the GaN/g-C3N4 heterojunction using the plane wave super-soft pseudopotential method based on first principles. Additionally, an external electric field is employed to modulate the band structure and optical properties of GaN/g-C3N4. The computational results demonstrate that this heterojunction possesses a direct band gap and is classified as type II heterojunction, where the intrinsic electric field formed at the interface effectively suppresses carrier recombination. When the external electric field intensity (E) falls below −0.1 V/Å and includes −0.1 V/Å, or exceeds 0.2 V/Å, the heterojunction undergoes a transition from a type II structure to the superior Z-scheme, leading to a significant enhancement in the rate of separation of photogenerated carriers and an augmentation in its redox capability. Furthermore, the introduction of a positive electric field induces a redshift in the absorption spectrum, effectively broadening the light absorption range of the heterojunction. The aforementioned findings demonstrate that the optical properties of GaN/g-C3N4 can be precisely tuned by applying an external electric field, thereby facilitating its highly efficient utilization in the field of photocatalysis. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

17 pages, 3787 KiB  
Article
The Influence of Heat Treatment on the Photoactivity of Amine-Modified Titanium Dioxide in the Reduction of Carbon Dioxide
by Iwona Pełech, Piotr Staciwa, Daniel Sibera, Konrad Sebastian Sobczuk, Wiktoria Majewska, Ewelina Kusiak-Nejman, Antoni W. Morawski, Kaiying Wang and Urszula Narkiewicz
Molecules 2024, 29(18), 4348; https://doi.org/10.3390/molecules29184348 - 13 Sep 2024
Viewed by 600
Abstract
Modification of titanium dioxide using ethylenediamine (EDA), diethylamine (DEA), and triethylamine (TEA) has been studied. As the reference material, titanium dioxide prepared by the sol–gel method using titanium(IV) isopropoxide as a precursor was applied. The preparation procedure involved heat treatment in the microwave [...] Read more.
Modification of titanium dioxide using ethylenediamine (EDA), diethylamine (DEA), and triethylamine (TEA) has been studied. As the reference material, titanium dioxide prepared by the sol–gel method using titanium(IV) isopropoxide as a precursor was applied. The preparation procedure involved heat treatment in the microwave reactor or in the high-temperature furnace. The obtained samples have been characterized in detail. The phase composition was determined through the X-ray diffraction method, and the average crystallite size was calculated based on it. Values for specific surface areas and the total pore volumes were calculated based on the isotherms obtained through the low-temperature nitrogen adsorption method. The bang gap energy was estimated based on Tauc’s plots. The influence of the type and content of amine, as well as heat treatment on the photocatalytic activity of modified titanium dioxide in the photocatalytic reduction of carbon dioxide, was determined and discussed. It was clear that, regardless of the amount and content of amine introduced, the higher photoactivity characterized the samples prepared in the microwave reactor. The highest amounts of hydrogen, carbon monoxide, and methane have been achieved using triethylamine-modified titanium dioxide. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

28 pages, 15432 KiB  
Article
MgO Nanoparticles as a Promising Photocatalyst towards Rhodamine B and Rhodamine 6G Degradation
by Maria-Anna Gatou, Natalia Bovali, Nefeli Lagopati and Evangelia A. Pavlatou
Molecules 2024, 29(18), 4299; https://doi.org/10.3390/molecules29184299 - 11 Sep 2024
Viewed by 1116
Abstract
The increasing global requirement for clean and safe drinking water has necessitated the development of efficient methods for the elimination of organic contaminants, especially dyes, from wastewater. This study reports the synthesis of magnesium oxide (MgO) nanoparticles via a simple precipitation approach and [...] Read more.
The increasing global requirement for clean and safe drinking water has necessitated the development of efficient methods for the elimination of organic contaminants, especially dyes, from wastewater. This study reports the synthesis of magnesium oxide (MgO) nanoparticles via a simple precipitation approach and their thorough characterization using various techniques, including XRD, FT-IR, XPS, TGA, DLS, and FESEM. Synthesized MgO nanoparticles’ photocatalytic effectiveness was evaluated towards rhodamine B and rhodamine 6G degradation under both UV and visible light irradiation. The results indicated that the MgO nanoparticles possess a face-centered cubic structure with enhanced crystallinity and purity, as well as an average crystallite size of approximately 3.20 nm. The nanoparticles demonstrated a significant BET surface area (52 m2/g) and a bandgap value equal to 5.27 eV. Photocatalytic experiments indicated complete degradation of rhodamine B dye under UV light within 180 min and 83.23% degradation under visible light. For rhodamine 6G, the degradation efficiency was 92.62% under UV light and 38.71% under visible light, thus verifying the MgO catalyst’s selectivity towards degradation of rhodamine B dye. Also, reusability of MgO was investigated for five experimental photocatalytic trials with very promising results, mainly against rhodamine B. Scavenging experiments confirmed that •OH radicals were the major reactive oxygen species involved in the photodegradation procedure, unraveling the molecular mechanism of the photocatalytic efficiency of MgO. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

14 pages, 3298 KiB  
Article
Boosting the Activation of Molecular Oxygen and the Degradation of Rhodamine B in Polar-Functional-Group-Modified g-C3N4
by Jing Chen, Minghua Yang, Hongjiao Zhang, Yuxin Chen, Yujie Ji, Ruohan Yu and Zhenguo Liu
Molecules 2024, 29(16), 3836; https://doi.org/10.3390/molecules29163836 - 13 Aug 2024
Viewed by 897
Abstract
Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized [...] Read more.
Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C3N4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min−1, surpassing most other g-C3N4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C3N4 to enhance efficient molecular oxygen activation. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

19 pages, 3534 KiB  
Article
Modulation of Electronic Availability in g-C3N4 Using Nickel (II), Manganese (II), and Copper (II) to Enhance the Disinfection and Photocatalytic Properties
by Angie V. Lasso-Escobar, Elkin Darío C. Castrillon, Jorge Acosta, Sandra Navarro, Estefanía Correa-Penagos, John Rojas and Yenny P. Ávila-Torres
Molecules 2024, 29(16), 3775; https://doi.org/10.3390/molecules29163775 - 9 Aug 2024
Viewed by 794
Abstract
Carbon nitrides can form coordination compounds or metallic oxides in the presence of transition metals, depending on the reaction conditions. By adjusting the pH to basic levels for mild synthesis with metals, composites like g-C3N4-M(OH)x (where M represents [...] Read more.
Carbon nitrides can form coordination compounds or metallic oxides in the presence of transition metals, depending on the reaction conditions. By adjusting the pH to basic levels for mild synthesis with metals, composites like g-C3N4-M(OH)x (where M represents metals) were obtained for nickel (II) and manganese (II), while copper (II) yielded coordination compounds such as Cu-g-C3N4. These materials underwent spectroscopic and electrochemical characterization, revealing their photocatalytic potential to generate superoxide anion radicals—a feature consistent across all metals. Notably, the copper coordination compound also produced significant hydroxyl radicals. Leveraging this catalytic advantage, with band gap energy in the visible region, all compounds were activated to disinfect E. coli bacteria, achieving total disinfection with Cu-g-C3N4. The textural properties influence the catalytic performance, with copper’s stabilization as a coordination compound enabling more efficient activity compared to the other metals. Additionally, the determination of radicals generated under light in the presence of dicloxacillin supported the proposed mechanism and highlighted the potential for degrading organic molecules with this new material, alongside its disinfectant properties. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

17 pages, 5825 KiB  
Article
First-Principles Study on Janus-Structured Sc2CX2/Sc2CY2 (X, Y = F, Cl, Br) Heterostructures for Solar Energy Conversion
by Xin He, Yanan Wu, Jia Luo, Xianglin Dai, Jun Song and Yong Tang
Molecules 2024, 29(12), 2898; https://doi.org/10.3390/molecules29122898 - 18 Jun 2024
Viewed by 742
Abstract
Two-dimensional van der Waals heterostructures have good application prospects in solar energy conversion due to their excellent optoelectronic performance. In this work, the electronic structures of Sc2CF2/Sc2CCl2, Sc2CF2/Sc2CBr2 [...] Read more.
Two-dimensional van der Waals heterostructures have good application prospects in solar energy conversion due to their excellent optoelectronic performance. In this work, the electronic structures of Sc2CF2/Sc2CCl2, Sc2CF2/Sc2CBr2, and Sc2CCl2/Sc2CBr2 heterostructures, as well as their properties in photocatalysis and photovoltaics, have been comprehensively studied using the first-principles method. Firstly, both of the three thermodynamically and dynamically stable heterostructures are found to have type-II band alignment with band gap values of 0.58 eV, 0.78 eV, and 1.35 eV. Meanwhile, the photogenerated carriers in Sc2CF2/Sc2CCl2 and Sc2CF2/Sc2CBr2 heterostructures are predicated to follow the direct Z-scheme path, enabling their abilities for water splitting. As for the Sc2CCl2/Sc2CBr2 heterostructure, its photovoltaic conversion efficiency is estimated to be 20.78%. Significantly, the light absorption coefficients of Sc2CF2/Sc2CCl2, Sc2CF2/Sc2CBr2, and Sc2CCl2/Sc2CBr2 heterostructures are enhanced more than those of the corresponding monolayers. Moreover, biaxial strains have been observed to considerably tune the aforementioned properties of heterostructures. All the theoretical results presented in this work demonstrate the application potential of Sc2CX2/Sc2CY2 (X, Y = F, Cl, Br) heterostructures in photocatalysis and photovoltaics. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

11 pages, 2032 KiB  
Article
Unveiling the Low-Lying Spin States of [Fe3S4] Clusters via the Extended Broken-Symmetry Method
by Shibing Chu and Qiuyu Gao
Molecules 2024, 29(9), 2152; https://doi.org/10.3390/molecules29092152 - 6 May 2024
Viewed by 907
Abstract
Photosynthetic water splitting, when synergized with hydrogen production catalyzed by hydrogenases, emerges as a promising avenue for clean and renewable energy. However, theoretical calculations have faced challenges in elucidating the low-lying spin states of iron–sulfur clusters, which are integral components of hydrogenases. To [...] Read more.
Photosynthetic water splitting, when synergized with hydrogen production catalyzed by hydrogenases, emerges as a promising avenue for clean and renewable energy. However, theoretical calculations have faced challenges in elucidating the low-lying spin states of iron–sulfur clusters, which are integral components of hydrogenases. To address this challenge, we employ the Extended Broken-Symmetry method for the computation of the cubane–[Fe3S4] cluster within the [FeNi] hydrogenase enzyme. This approach rectifies the error caused by spin contamination, allowing us to obtain the magnetic exchange coupling constant and the energy level of the low-lying state. We find that the Extended Broken-Symmetry method provides more accurate results for differences in bond length and the magnetic coupling constant. This accuracy assists in reconstructing the low-spin ground state force and determining the geometric structure of the ground state. By utilizing the Extended Broken-Symmetry method, we further highlight the significance of the geometric arrangement of metal centers in the cluster’s properties and gain deeper insights into the magnetic properties of transition metal iron–sulfur clusters at the reaction centers of hydrogenases. This research illuminates the untapped potential of hydrogenases and their promising role in the future of photosynthesis and sustainable energy production. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

12 pages, 4558 KiB  
Article
Construction of TiO2/CuPc Heterojunctions for the Efficient Photocatalytic Reduction of CO2 with Water
by Jun Wang, Shuang Fu, Peng Hou, Jun Liu, Chao Li, Hongguang Zhang and Guowei Wang
Molecules 2024, 29(8), 1899; https://doi.org/10.3390/molecules29081899 - 22 Apr 2024
Cited by 3 | Viewed by 1124
Abstract
Utilizing solar energy for photocatalytic CO2 reduction is an attractive research field because of its convenience, safety, and practicality. The selection of an appropriate photocatalyst is the key to achieve efficient CO2 reduction. Herein, we report the synthesis of TiO2 [...] Read more.
Utilizing solar energy for photocatalytic CO2 reduction is an attractive research field because of its convenience, safety, and practicality. The selection of an appropriate photocatalyst is the key to achieve efficient CO2 reduction. Herein, we report the synthesis of TiO2/CuPc heterojunctions by compositing CuPc with TiO2 microspheres via a hydroxyl-induced self-assembly process. The experimental investigations demonstrated that the optimal TiO2/0.5CuPc photocatalyst exhibited a significantly enhanced CO2 photoreduction rate up to 32.4 μmol·g−1·h−1 under 300 W xenon lamp irradiation, which was 3.7 times that of the TiO2 microspheres alone. The results of photoelectrochemical experiments indicated that the construction of the heterojunctions by introducing CuPc effectively promoted the separation and transport of photogenerated carriers, thus enhancing the catalytic effect of the photocatalyst. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

15 pages, 3245 KiB  
Article
Pd:In-Doped TiO2 as a Bifunctional Catalyst for the Photoelectrochemical Oxidation of Paracetamol and Simultaneous Green Hydrogen Production
by Nicolás Sacco, Alexander Iguini, Ilaria Gamba, Fernanda Albana Marchesini and Gonzalo García
Molecules 2024, 29(5), 1073; https://doi.org/10.3390/molecules29051073 - 29 Feb 2024
Cited by 1 | Viewed by 1215
Abstract
The integration of clean energy generation with wastewater treatment holds promise for addressing both environmental and energy concerns. Focusing on photocatalytic hydrogen production and wastewater treatment, this study introduces PdIn/TiO2 catalysts for the simultaneous removal of the pharmaceutical contaminant paracetamol (PTM) and [...] Read more.
The integration of clean energy generation with wastewater treatment holds promise for addressing both environmental and energy concerns. Focusing on photocatalytic hydrogen production and wastewater treatment, this study introduces PdIn/TiO2 catalysts for the simultaneous removal of the pharmaceutical contaminant paracetamol (PTM) and hydrogen production. Physicochemical characterization showed a high distribution of Pd and In on the support as well as a high interaction with it. The Pd and In deposition enhance the light absorption capability and significantly improve the hydrogen evolution reaction (HER) in the absence and presence of paracetamol compared to TiO2. On the other hand, the photoelectroxidation of PTM at TiO2 and PdIn/TiO2 follows the full mineralization path and, accordingly, is limited by the adsorption of intermediate species on the electrode surface. Thus, PdIn-doped TiO2 stands out as a promising photoelectrocatalyst, showcasing enhanced physicochemical properties and superior photoelectrocatalytic performance. This underscores its potential for both environmental remediation and sustainable hydrogen production. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Graphical abstract

15 pages, 5821 KiB  
Article
Visible Light Photoactivity of g-C3N4/MoS2 Nanocomposites for Water Remediation of Hexavalent Chromium
by Chunmei Tian, Huijuan Yu, Ruiqi Zhai, Jing Zhang, Cuiping Gao, Kezhen Qi, Yingjie Zhang, Qiang Ma and Mengxue Guo
Molecules 2024, 29(3), 637; https://doi.org/10.3390/molecules29030637 - 30 Jan 2024
Viewed by 1297
Abstract
Water pollution has becoming an increasingly serious issue, and it has attracted a significant amount of attention from scholars. Here, in order remove heavy metal hexavalent chromium (Cr (VI)) from wastewater, graphitic carbon nitride (g-C3N4) was modified with molybdenum [...] Read more.
Water pollution has becoming an increasingly serious issue, and it has attracted a significant amount of attention from scholars. Here, in order remove heavy metal hexavalent chromium (Cr (VI)) from wastewater, graphitic carbon nitride (g-C3N4) was modified with molybdenum disulfide (MoS2) at different mass ratios via an ultrasonic method to synthesize g-C3N4/MoS2 (CNM) nanocomposites as photocatalysts. The nanocomposites displayed efficient photocatalytic removal of toxic hexavalent chromium (Cr (VI)) from water under UV, solar, and visible light irradiation. The CNM composite with a 1:2 g-C3N4 to MoS2 ratio achieved optimal 91% Cr (VI) removal efficiency at an initial 20 mg/L Cr (VI) concentration and pH 3 after 120 min visible light irradiation. The results showed a high pH range and good recycling stability. The g-C3N4/MoS2 nanocomposites exhibited higher performance compared to pure g-C3N4 due to the narrowed band gap of the Z-scheme heterojunction structure and effective separation of photo-generated electron–hole pairs, as evidenced by structural and optical characterization. Overall, the ultrasonic synthesis of g-C3N4/MoS2 photocatalysts shows promise as an efficient technique for enhancing heavy metal wastewater remediation under solar and visible light. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

13 pages, 3204 KiB  
Article
Rational Photodeposition of Cobalt Phosphate on Flower-like ZnIn2S4 for Efficient Photocatalytic Hydrogen Evolution
by Yonghui Wu, Zhipeng Wang, Yuqing Yan, Yu Wei, Jun Wang, Yunsheng Shen, Kai Yang, Bo Weng and Kangqiang Lu
Molecules 2024, 29(2), 465; https://doi.org/10.3390/molecules29020465 - 17 Jan 2024
Cited by 9 | Viewed by 1455
Abstract
The high electrons and holes recombination rate of ZnIn2S4 significantly limits its photocatalytic performance. Herein, a simple in situ photodeposition strategy is adopted to introduce the cocatalyst cobalt phosphate (Co-Pi) on ZnIn2S4, aiming at facilitating the [...] Read more.
The high electrons and holes recombination rate of ZnIn2S4 significantly limits its photocatalytic performance. Herein, a simple in situ photodeposition strategy is adopted to introduce the cocatalyst cobalt phosphate (Co-Pi) on ZnIn2S4, aiming at facilitating the separation of electron–hole by promoting the transfer of photogenerated holes of ZnIn2S4. The study reveals that the composite catalyst has superior photocatalytic performance than blank ZnIn2S4. In particular, ZnIn2S4 loaded with 5% Co-Pi (ZnIn2S4/5%Co-Pi) has the best photocatalytic activity, and the H2 production rate reaches 3593 μmol·g−1·h−1, approximately double that of ZnIn2S4 alone. Subsequent characterization data demonstrate that the introduction of the cocatalyst Co-Pi facilitates the transfer of ZnIn2S4 holes, thus improving the efficiency of photogenerated carrier separation. This investigation focuses on the rational utilization of high-content and rich cocatalysts on earth to design low-cost and efficient composite catalysts to achieve sustainable photocatalytic hydrogen evolution. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

16 pages, 3011 KiB  
Article
Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2
by Xuejiao Wang, Shuyuan Liu, Shu Lin, Kezhen Qi, Ya Yan and Yuhua Ma
Molecules 2024, 29(2), 361; https://doi.org/10.3390/molecules29020361 - 11 Jan 2024
Cited by 9 | Viewed by 1154 | Correction
Abstract
4-Nitrophenol (4-NP) is considered a priority organic pollutant with high toxicity. Many authors have been committed to developing efficient, green, and environmentally friendly technological processes to treat wastewater containing 4-NP. Here, we investigated how the addition of Ca2+ affects the catalytic degradation [...] Read more.
4-Nitrophenol (4-NP) is considered a priority organic pollutant with high toxicity. Many authors have been committed to developing efficient, green, and environmentally friendly technological processes to treat wastewater containing 4-NP. Here, we investigated how the addition of Ca2+ affects the catalytic degradation of 4-NP with AgInS2 when exposed to light. We synthesized AgInS2 (AIS) and Ca2+-doped AgInS2 (Ca-AIS) with varying amounts of Ca2+ using a low-temperature liquid phase method. The SEM, XRD, XPS, HRTEM, BET, PL, and UV-Vis DRS characteristics were employed to analyze the structure, morphology, and optical properties of the materials. The effects of different amounts of Ca2+ on the photocatalytic degradation of 4-NP were investigated. Under visible light illumination for a duration of 120 min, a degradation rate of 63.2% for 4-Nitrophenol (4-NP) was achieved. The results showed that doping with an appropriate amount of Ca2+ could improve the visible light catalytic activity of AIS. This work provides an idea for finding suitable cheap alkaline earth metal doping agents to replace precious metals for the improvement of photocatalytic activities. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

13 pages, 4104 KiB  
Article
Constructing In2S3/CdS/N-rGO Hybrid Nanosheets via One-Pot Pyrolysis for Boosting and Stabilizing Visible Light-Driven Hydrogen Evolution
by Minghao Zhang, Xiaoqun Wu, Xiaoyuan Liu, Huixin Li, Ying Wang and Debao Wang
Molecules 2023, 28(23), 7878; https://doi.org/10.3390/molecules28237878 - 30 Nov 2023
Cited by 2 | Viewed by 1122
Abstract
The construction of hybrid junctions remains challenging for the rational design of visible light-driven photocatalysts. Herein, In2S3/CdS/N-rGO hybrid nanosheets were successfully prepared via a one-step pyrolysis method using deep eutectic solvents as precursors. Benefiting from the surfactant-free pyrolysis method, [...] Read more.
The construction of hybrid junctions remains challenging for the rational design of visible light-driven photocatalysts. Herein, In2S3/CdS/N-rGO hybrid nanosheets were successfully prepared via a one-step pyrolysis method using deep eutectic solvents as precursors. Benefiting from the surfactant-free pyrolysis method, the obtained ultrathin hybrid nanosheets assemble into stable three-dimensional self-standing superstructures. The tremella-like structure of hybrid In2S3/N-rGO exhibits excellent photocatalytic hydrogen production performance. The hydrogen evolution rate is 10.9 mmol·g−1·h−1, which is greatly superior to CdS/N-rGO (3.7 mmol·g−1·h−1) and In2S3/N-rGO (2.6 mmol·g−1·h−1). This work provides more opportunities for the rational design and fabrication of hybrid ultrathin nanosheets for broad catalytic applications in sustainable energy and the environment. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

14 pages, 15760 KiB  
Article
CdS Deposited In Situ on g-C3N4 via a Modified Chemical Bath Deposition Method to Improve Photocatalytic Hydrogen Production
by Ligang Ma, Wenjun Jiang, Chao Lin, Le Xu, Tianyu Zhu and Xiaoqian Ai
Molecules 2023, 28(23), 7846; https://doi.org/10.3390/molecules28237846 - 29 Nov 2023
Cited by 8 | Viewed by 1155
Abstract
Ultra-thin two-dimensional materials are attracting widespread interest due to their excellent properties, and they are becoming ideal candidates for a variety of energy and environmental photocatalytic applications. Herein, CdS nanorods are successfully grown in situ between a monolayer of g-C3N4 [...] Read more.
Ultra-thin two-dimensional materials are attracting widespread interest due to their excellent properties, and they are becoming ideal candidates for a variety of energy and environmental photocatalytic applications. Herein, CdS nanorods are successfully grown in situ between a monolayer of g-C3N4 using a chemical water bath method. Continuous ultrasound is introduced during the preparation process, which effectively prevents the accumulation of a g-C3N4 layer. The g-C3N4@CdS nanocomposite exhibits significantly enhanced photocatalytic activity for hydrogen production under visible-light irradiation, which is attributed to a well-matched band structure and an intimate van der Waals heterojunction interface. The mechanism of photocatalytic hydrogen production is discussed in detail. Moreover, our work can serve as a basis for the construction of other highly catalytically active two-dimensional heterostructures. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Graphical abstract

19 pages, 3947 KiB  
Article
The Fabrication of Halogen-Doped FeWO4 Heterostructure Anchored over Graphene Oxide Nanosheets for the Sunlight-Driven Photocatalytic Degradation of Methylene Blue Dye
by Muhammad Irfan, Noor Tahir, Muhammad Zahid, Saima Noreen, Muhammad Yaseen, Muhammad Shahbaz, Ghulam Mustafa, Rana Abdul Shakoor and Imran Shahid
Molecules 2023, 28(20), 7022; https://doi.org/10.3390/molecules28207022 - 10 Oct 2023
Viewed by 1538
Abstract
Rapid industrialization and urbanization are the two significant issues causing environmental pollution. The polluted water from various industries contains refractory organic materials such as dyes. Heterogeneous photocatalysis using semiconductor metal oxides is an effective remediation technique for wastewater treatment. In this research, we [...] Read more.
Rapid industrialization and urbanization are the two significant issues causing environmental pollution. The polluted water from various industries contains refractory organic materials such as dyes. Heterogeneous photocatalysis using semiconductor metal oxides is an effective remediation technique for wastewater treatment. In this research, we used a co-precipitation-assisted hydrothermal method to synthesize a novel I-FeWO4/GO sunlight-active nanocomposite. Introducing dopant reductive iodine species improved the catalytic activity of FeWO4/GO. I ions improved the catalytic performance of H2O2 by doping into FeWO4/GO composite. Due to I doping and the introduction of graphene as a support medium, enhanced charge separation and transfer were observed, which is crucial for efficient heterogeneous surface reactions. Various techniques, like FTIR, SEM-EDX, XRD, and UV–Vis spectroscopy, were used to characterize composites. The Tauc plot method was used to calculate pristine and iodine-doped FeWO4/GO bandgap. Iodine doping reduced the bandgap from 2.8 eV to 2.6 eV. The degradation of methylene blue (MB) was evaluated by optimizing various parameters like catalyst concentration, oxidant dose, pH, and time. The optimum conditions for photocatalysts where maximum degradation occurred were pH = 7 for both FeWO4/GO and I-FeWO4/GO; oxidant dose = 9 mM and 7 mM for FeWO4/GO and I-FeWO4/GO; and catalyst concentration = 30 mg and 35 mg/100 mL for FeWO4/GO and I-FeWO4/GO; the optimum time was 120 min. Under these optimum conditions, FeWO4/GO and I-FeWO4/GO showed 92.0% and 97.0% degradation of MB dye. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

14 pages, 12085 KiB  
Article
In Situ Decoration of Bi2S3 Nanosheets on Zinc Oxide/Cellulose Acetate Composite Films for Photodegradation of Dyes under Visible Light Irradiation
by Yixiao Dan, Jialiang Xu, Jian Jian, Lingxi Meng, Pei Deng, Jiaqi Yan, Zhengqiu Yuan, Yusheng Zhang and Hu Zhou
Molecules 2023, 28(19), 6882; https://doi.org/10.3390/molecules28196882 - 29 Sep 2023
Cited by 3 | Viewed by 1224
Abstract
A novel Bi2S3-zinc oxide/cellulose acetate composite film was prepared through a blending-wet phase conversion and in situ precipitate method. The results revealed that the incorporation of Bi2S3 in the film increased the cavity density and uniformity, [...] Read more.
A novel Bi2S3-zinc oxide/cellulose acetate composite film was prepared through a blending-wet phase conversion and in situ precipitate method. The results revealed that the incorporation of Bi2S3 in the film increased the cavity density and uniformity, which provided additional space for the growth of active species and improved the interaction between dye pollutants and active sites. Zinc oxide acted as a mediator to facilitate the separation of electron–hole pairs effectively preventing their recombination, thus reducing the photo-corrosion of Bi2S3. As a result, the Bi2S3-ZnO/CA composite film exhibited favorable photocatalytic activity in the degradation of various dyes. Additionally, the composite film displayed effortless separation and recovery without the need for centrifugation or filtration, while maintaining its exceptional catalytic performance even after undergoing various processes. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

21 pages, 21687 KiB  
Article
Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW12/TiO2 Composite: Degradation Pathways and Toxicity Assessment
by Hongfei Shi, Haoshen Wang, Enji Zhang, Xiaoshu Qu, Jianping Li, Sisi Zhao, Huajing Gao and Zhe Chen
Molecules 2023, 28(19), 6831; https://doi.org/10.3390/molecules28196831 - 27 Sep 2023
Cited by 4 | Viewed by 1488
Abstract
Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H3PW12O [...] Read more.
Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H3PW12O40] (PW12)-doped titanium dioxide (TiO2) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as x wt% Ag/PW12/TiO2 (abbr. x% Ag/PT, x = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m2/g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW12-free Ag/TiO2 and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW12 and the modification of Ag NPs on TiO2 broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

13 pages, 4536 KiB  
Article
Photoredox Coupling of CO2 Reduction with Benzyl Alcohol Oxidation over Ternary Metal Chalcogenides (ZnmIn2S3+m, m = 1–5) with Regulable Products Selectivity
by Zisheng Du, Kexin Gong, Zhiruo Yu, Yang Yang, Peixian Wang, Xiuzhen Zheng, Zhongliao Wang, Sujuan Zhang, Shifu Chen and Sugang Meng
Molecules 2023, 28(18), 6553; https://doi.org/10.3390/molecules28186553 - 10 Sep 2023
Cited by 4 | Viewed by 1747
Abstract
Integrating photocatalytic CO2 reduction with selective benzyl alcohol (BA) oxidation in one photoredox reaction system is a promising way for the simultaneous utilization of photogenerated electrons and holes. Herein, ZnmIn2S3+m (m = 1–5) semiconductors (ZnIn2S [...] Read more.
Integrating photocatalytic CO2 reduction with selective benzyl alcohol (BA) oxidation in one photoredox reaction system is a promising way for the simultaneous utilization of photogenerated electrons and holes. Herein, ZnmIn2S3+m (m = 1–5) semiconductors (ZnIn2S4, Zn2In2S5, Zn3In2S6, Zn4In2S7, and Zn5In2S8) with various composition faults were synthesized via a simple hydrothermal method and used for effective selective dehydrocoupling of benzyl alcohol into high-value C–C coupling products and reduction of CO2 into syngas under visible light. The absorption edge of ZnmIn2S3+m samples shifted to shorter wavelengths as the atomic ratio of Zn/In was increased. The conduction band and valence band position can be adjusted by changing the Zn/In ratio, resulting in controllable photoredox ability for selective BA oxidation and CO2 reduction. For example, the selectivity of benzaldehyde (BAD) product was reduced from 76% (ZnIn2S4, ZIS1) to 27% (Zn4In2S7, ZIS4), while the selectivity of hydrobenzoin (HB) was increased from 22% to 56%. Additionally, the H2 formation rate on ZIS1 (1.6 mmol/g/h) was 1.6 times higher than that of ZIS4 (1.0 mmol/g/h), and the CO formation rate on ZIS4 (0.32 mmol/g/h) was three times higher than that of ZIS1 (0.13 mmol/g/h), demonstrating that syngas with different H2/CO ratios can be obtained by controlling the Zn/In ratio in ZnmIn2S3+m. This study provides new insights into unveiling the relationship of structure–property of ZnmIn2S3+m layered crystals, which are valuable for implementation in a wide range of environment and energy applications. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Graphical abstract

14 pages, 1701 KiB  
Article
Photoredox-Catalyzed Synthesis of 3-Sulfonylated Pyrrolin-2-ones via a Regioselective Tandem Sulfonylation Cyclization of 1,5-Dienes
by Ran Ding, Liang Li, Ya-Ting Yu, Bing Zhang and Pei-Long Wang
Molecules 2023, 28(14), 5473; https://doi.org/10.3390/molecules28145473 - 17 Jul 2023
Cited by 2 | Viewed by 1380
Abstract
A mild, visible-light-induced, regioselective cascade sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides through the intermolecular radical addition/cyclization of alkenes C(sp2)-H was developed. This procedure proceeds well and affords a mild and efficient route to a range of monosulfonylated pyrrolin-2-ones at room temperatures. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

16 pages, 3657 KiB  
Article
Bifunctional Hot Water Vapor Template-Mediated Synthesis of Nanostructured Polymeric Carbon Nitride for Efficient Hydrogen Evolution
by Baihua Long, Hongmei He, Yang Yu, Wenwen Cai, Quan Gu, Jing Yang and Sugang Meng
Molecules 2023, 28(12), 4862; https://doi.org/10.3390/molecules28124862 - 20 Jun 2023
Cited by 4 | Viewed by 2632
Abstract
Regulating bulk polymeric carbon nitride (PCN) into nanostructured PCN has long been proven effective in enhancing its photocatalytic activity. However, simplifying the synthesis of nanostructured PCN remains a considerable challenge and has drawn widespread attention. This work reported the one-step green and sustainable [...] Read more.
Regulating bulk polymeric carbon nitride (PCN) into nanostructured PCN has long been proven effective in enhancing its photocatalytic activity. However, simplifying the synthesis of nanostructured PCN remains a considerable challenge and has drawn widespread attention. This work reported the one-step green and sustainable synthesis of nanostructured PCN in the direct thermal polymerization of the guanidine thiocyanate precursor via the judicious introduction of hot water vapor’s dual function as gas-bubble templates along with a green etching reagent. By optimizing the temperature of the water vapor and polymerization reaction time, the as-prepared nanostructured PCN exhibited a highly boosted visible-light-driven photocatalytic hydrogen evolution activity. The highest H2 evolution rate achieved was 4.81mmol∙g−1∙h−1, which is over four times larger than that of the bulk PCN (1.19 mmol∙g−1∙h−1) prepared only by thermal polymerization of the guanidine thiocyanate precursor without the assistance of bifunctional hot water vapor. The enhanced photocatalytic activity might be attributed to the enlarged BET specific surface area, increased active site quantity, and highly accelerated photo-excited charge-carrier transfer and separation. Moreover, the sustainability of this environmentally friendly hot water vapor dual-function mediated method was also shown to be versatile in preparing other nanostructured PCN photocatalysts derived from other precursors such as dicyandiamide and melamine. This work is expected to provide a novel pathway for exploring the rational design of nanostructured PCN for highly efficient solar energy conversion. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Graphical abstract

16 pages, 9484 KiB  
Article
Synthesis and Hydrogen Production Performance of MoP/a-TiO2/Co-ZnIn2S4 Flower-like Composite Photocatalysts
by Keliang Wu, Yuhang Shang, Huazhen Li, Pengcheng Wu, Shuyi Li, Hongyong Ye, Fanqiang Jian, Junfang Zhu, Dongmei Yang, Bingke Li and Xiaofei Wang
Molecules 2023, 28(11), 4350; https://doi.org/10.3390/molecules28114350 - 25 May 2023
Cited by 9 | Viewed by 1729
Abstract
Semiconductor photocatalysis is an effective strategy for solving the problems of increasing energy demand and environmental pollution. ZnIn2S4-based semiconductor photocatalyst materials have attracted much attention in the field of photocatalysis due to their suitable energy band structure, stable chemical [...] Read more.
Semiconductor photocatalysis is an effective strategy for solving the problems of increasing energy demand and environmental pollution. ZnIn2S4-based semiconductor photocatalyst materials have attracted much attention in the field of photocatalysis due to their suitable energy band structure, stable chemical properties, and good visible light responsiveness. In this study, ZnIn2S4 catalysts were modified by metal ion doping, the construction of heterojunctions, and co-catalyst loading to successfully prepare composite photocatalysts. The Co-ZnIn2S4 catalyst synthesized by Co doping and ultrasonic exfoliation exhibited a broader absorption band edge. Next, an a-TiO2/Co-ZnIn2S4 composite photocatalyst was successfully prepared by coating partly amorphous TiO2 on the surface of Co-ZnIn2S4, and the effect of varying the TiO2 loading time on photocatalytic performance was investigated. Finally, MoP was loaded as a co-catalyst to increase the hydrogen production efficiency and reaction activity of the catalyst. The absorption edge of MoP/a-TiO2/Co-ZnIn2S4 was widened from 480 nm to about 518 nm, and the specific surface area increased from 41.29 m2/g to 53.25 m2/g. The hydrogen production performance of this composite catalyst was investigated using a simulated light photocatalytic hydrogen production test system, and the rate of hydrogen production by MoP/a-TiO2/Co-ZnIn2S4 was found to be 2.96 mmol·h−1·g−1, which was three times that of the pure ZnIn2S4 (0.98 mmol·h−1·g−1). After use in three cycles, the hydrogen production only decreased by 5%, indicating that it has good cycle stability. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

17 pages, 5166 KiB  
Article
One-Step Synthesis of Ag2O/Fe3O4 Magnetic Photocatalyst for Efficient Organic Pollutant Removal via Wide-Spectral-Response Photocatalysis–Fenton Coupling
by Chuanfu Shan, Ziqian Su, Ziyi Liu, Ruizheng Xu, Jianfeng Wen, Guanghui Hu, Tao Tang, Zhijie Fang, Li Jiang and Ming Li
Molecules 2023, 28(10), 4155; https://doi.org/10.3390/molecules28104155 - 17 May 2023
Cited by 6 | Viewed by 2073
Abstract
Photocatalysis holds great promise for addressing water pollution caused by organic dyes, and the development of Ag2O/Fe3O4 aims to overcome the challenges of slow degradation efficiency and difficult recovery of photocatalysts. In this study, we present a novel, [...] Read more.
Photocatalysis holds great promise for addressing water pollution caused by organic dyes, and the development of Ag2O/Fe3O4 aims to overcome the challenges of slow degradation efficiency and difficult recovery of photocatalysts. In this study, we present a novel, environmentally friendly Ag2O/Fe3O4 magnetic nanocomposite synthesized via a simple coprecipitation method, which not only constructs a type II heterojunction but also successfully couples photocatalysis and Fenton reaction, enhancing the broad-spectrum response and efficiency. The Ag2O/Fe3O4 (10%) nanocomposite demonstrates exceptional degradation performance toward organic dyes, achieving 99.5% degradation of 10 mg/L methyl orange (MO) within 15 min under visible light irradiation and proving its wide applicability by efficiently degrading various dyes while maintaining high stability over multiple testing cycles. Magnetic testing further highlighted the ease of Ag2O/Fe3O4 (10%) recovery using magnetic force. This innovative approach offers a promising strategy for constructing high-performance photocatalytic systems for addressing water pollution caused by organic dyes. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

Other

Jump to: Research

1 pages, 131 KiB  
Correction
Correction: Wang et al. Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2. Molecules 2024, 29, 361
by Xuejiao Wang, Shuyuan Liu, Shu Lin, Kezhen Qi, Ya Yan and Yuhua Ma
Molecules 2024, 29(12), 2764; https://doi.org/10.3390/molecules29122764 - 11 Jun 2024
Viewed by 470
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Back to TopTop