Nanomaterials for Photocatalytic Degradation of Pollutant and Hydrogen Evolution

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: 20 January 2025 | Viewed by 2982

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
Interests: photocatalysis; multi-functional water treatment materials (catalytic materials, adsorption materials); carbon electrode materials

Special Issue Information

Dear Colleagues,

Photocatalytic degradation and hydrogen production has been developed over decades and is considered a green and advanced technology in the environmental and energy fields. Now, efficient visible light absorption and the rapid separation of photogenerated electron–hole are the main factors to improve their photocatalytic efficiency. Therefore, the generation, transfer, and reaction of the photogenerated carries has become the core content of photocatalytic research. In general, photogenerated electrons and holes can be modulated by controlling composition, morphology, surface defects, surface coordination environment, and composite catalysts.

This Special Issue of Nanomaterials aims to delve deeper into the mechanisms and processes of photocatalytic degradation and hydrogen production. This field has developed rapidly in the past 20 years and has attracted the attention of a large number of researchers. The relation between the surface properties of photocatalysts and their catalytic performance is of particular interest. For this Special Issue, we invite the contributions of the leadership group in this field, with the aim of balancing the latest developments in the discipline.

Dr. Jing Feng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalysis
  • degradation
  • hydrogen production
  • visible light
  • energy bands
  • defects
  • heterojunctions
  • surface properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 6091 KiB  
Communication
A Tight-Connection g-C3N4/BiOBr (001) S-Scheme Heterojunction Photocatalyst for Boosting Photocatalytic Degradation of Organic Pollutants
by Xinyi Zhang, Weixia Li, Liangqing Hu, Mingming Gao and Jing Feng
Nanomaterials 2024, 14(13), 1071; https://doi.org/10.3390/nano14131071 - 22 Jun 2024
Cited by 1 | Viewed by 1099
Abstract
The efficient separation of photogenerated charge carriers and strong oxidizing properties can improve photocatalytic performance. Here, we combine the construction of a tightly connected S-scheme heterojunction with the exposure of an active crystal plane to prepare g-C3N4/BiOBr for [...] Read more.
The efficient separation of photogenerated charge carriers and strong oxidizing properties can improve photocatalytic performance. Here, we combine the construction of a tightly connected S-scheme heterojunction with the exposure of an active crystal plane to prepare g-C3N4/BiOBr for the degradation of high-concentration organic pollutants. This strategy effectively improves the separation efficiency of photogenerated carriers and the number of active sites. Notably, the synthesized g-C3N4/BiOBr displays excellent photocatalytic degradation activity towards various organic pollutants, including methylene blue (MB, 90.8%), congo red (CR, 99.2%), and tetracycline (TC, 89%). Furthermore, the photocatalytic degradation performance of g-C3N4/BiOBr for MB maintains 80% efficiency under natural water quality (tap water, lake water, river water), and a wide pH range (pH = 4–10). Its excellent photocatalytic activity is attributed to the tight connection between g-C3N4 and BiOBr in the S-scheme heterojunction interface, as well as the exposure of highly active (001) crystal planes. These improve the efficiency of the separation of photogenerated carriers, and maintain their strong oxidation capability. This work presents a simple approach to improving the separation of electrons and holes by tightly combining two components within a heterojunction. Full article
Show Figures

Figure 1

19 pages, 5029 KiB  
Article
Bromine Ion-Intercalated Layered Bi2WO6 as an Efficient Catalyst for Advanced Oxidation Processes in Tetracycline Pollutant Degradation Reaction
by Rama Krishna Chava and Misook Kang
Nanomaterials 2023, 13(18), 2614; https://doi.org/10.3390/nano13182614 - 21 Sep 2023
Cited by 2 | Viewed by 1450
Abstract
The visible-light-driven photocatalytic degradation of pharmaceutical pollutants in aquatic environments is a promising strategy for addressing water pollution problems. This work highlights the use of bromine-ion-doped layered Aurivillius oxide, Bi2WO6, to synergistically optimize the morphology and increase the formation [...] Read more.
The visible-light-driven photocatalytic degradation of pharmaceutical pollutants in aquatic environments is a promising strategy for addressing water pollution problems. This work highlights the use of bromine-ion-doped layered Aurivillius oxide, Bi2WO6, to synergistically optimize the morphology and increase the formation of active sites on the photocatalyst’s surface. The layered Bi2WO6 nanoplates were synthesized by a facile hydrothermal reaction in which bromine (Br) ions were introduced by adding cetyltrimethylammonium bromide (CTAB)/tetrabutylammonium bromide (TBAB)/potassium bromide (KBr). The as-synthesized Bi2WO6 nanoplates displayed higher photocatalytic tetracycline degradation activity (~83.5%) than the Bi2WO6 microspheres (~48.2%), which were obtained without the addition of Br precursors in the reaction medium. The presence of Br was verified experimentally, and the newly formed Bi2WO6 developed as nanoplates where the adsorbed Br ions restricted the multilayer stacking. Considering the significant morphology change, increased specific surface area, and enhanced photocatalytic performance, using a synthesis approach mediated by Br ions to design layered photocatalysts is expected to be a promising system for advancing water remediation. Full article
Show Figures

Graphical abstract

Back to TopTop