Advanced Magnetic Nanocomposites: Structural, Physical Properties and Application

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Inorganic Materials and Metal-Organic Frameworks".

Deadline for manuscript submissions: closed (31 October 2021) | Viewed by 30897

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor
Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 76001 Zlin, Czech Republic
Interests: magnetic materials; dielectric materials; electrical properties; luminescent nanomaterials; micro-wave absorbing materials; ceramics; materials chemistry; soft matter; nanostructured materials; materials for energy; semiconductor materials; nano-bio composite materials; metals and alloys; nanocomposites; functional materials; optical materials; graphene; polymer nanocomposites; graphene nanocomposites; graphene quantum dots; nanoparticles; structural properties; magnetic properties; dielectric properties; magnetically recoverable efficient photo-catalysts; data storage; gas sensing; magnetoresistance; other physical properties; synthesis; characterization; hyperthermia cancer treatment; drug delivery; magnetic resonance imaging (MRI) contrast agents; magnetic refrigeration (MR); spintronic devices; ferro-fluids; anode materials for Li-ion batteries; microwave devices; water splitting for hydrogen production; paint industry; super-capacitors; elect
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recently, magnetic nanoparticles and nanocomposites have established an extensive attention among the scientists and academicians due to its technological applications such as hyperthermia cancer treatment, drug-delivery, magnetic resonance imaging (MRI) contrast agent, magnetic refrigeration (MR), spintronic devices, magnetic recording media with higher storage density, magnetically recoverable efficient photo-catalyst, gas sensor, ferro-fluids, anode material for Li-ion battery, microwave devices, water splitting for hydrogen production, paint industry, super-capacitors, and electromagnetic interference shielding or microwave absorber, etc. For technological application, the performance of magnetic nanoparticles and nanocomposites can be regulated by its structural properties. A controllable synthesis/preparation technique can provide desired physical properties for specific application.

This special issue of Nanomaterials ‘‘Advanced Magnetic Nanocomposites: Structural, Physical Properties and Application’’ aims at receiving articles on recent development on advanced magnetic nanoparticles and nanocomposites with detailed explanation of structural, physical characteristics and further possible potential application. This special issue also focusses the synthesis/preparation and characterization of various type of magnetic nanoparticles and nanocomposites in the form of academic articles, letters, reviews and communications.  I kindly invite you for a contribution to this Special Issue of Nanomaterials ‘‘Advanced Magnetic Nanocomposites: Structural, Physical Properties and Application’’.

Dr. Raghvendra Singh Yadav
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Magnetic Nanoparticles
  • Magnetic Nanostructures
  • Magnetic Nanocomposites
  • Multifunctional Magnetic Nanocomposites
  • Synthesis and Characterization
  • Properties
  • Applications  

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2369 KiB  
Article
Magnetic Study of CuFe2O4-SiO2 Aerogel and Xerogel Nanocomposites
by Alizé V. Gaumet, Francesco Caddeo, Danilo Loche, Anna Corrias, Maria F. Casula, Andrea Falqui and Alberto Casu
Nanomaterials 2021, 11(10), 2680; https://doi.org/10.3390/nano11102680 - 12 Oct 2021
Cited by 2 | Viewed by 2144
Abstract
CuFe2O4 is an example of ferrites whose physico-chemical properties can vary greatly at the nanoscale. Here, sol-gel techniques are used to produce CuFe2O4-SiO2 nanocomposites where copper ferrite nanocrystals are grown within a porous dielectric silica [...] Read more.
CuFe2O4 is an example of ferrites whose physico-chemical properties can vary greatly at the nanoscale. Here, sol-gel techniques are used to produce CuFe2O4-SiO2 nanocomposites where copper ferrite nanocrystals are grown within a porous dielectric silica matrix. Nanocomposites in the form of both xerogels and aerogels with variable loadings of copper ferrite (5 wt%, 10 wt% and 15 wt%) were synthesized. Transmission electron microscopy and X-ray diffraction investigations showed the occurrence of CuFe2O4 nanoparticles with average crystal size ranging from a few nanometers up to around 9 nm, homogeneously distributed within the porous silica matrix, after thermal treatment of the samples at 900 °C. Evidence of some impurities of CuO and α-Fe2O3 was found in the aerogel samples with 10 wt% and 15 wt% loading. DC magnetometry was used to investigate the magnetic properties of these nanocomposites, as a function of the loading of copper ferrite and of the porosity characteristics. All the nanocomposites show a blocking temperature lower than RT and soft magnetic features at low temperature. The observed magnetic parameters are interpreted taking into account the occurrence of size and interaction effects in an ensemble of superparamagnetic nanoparticles distributed in a matrix. These results highlight how aerogel and xerogel matrices give rise to nanocomposites with different magnetic features and how the spatial distribution of the nanophase in the matrices modifies the final magnetic properties with respect to the case of conventional unsupported nanoparticles. Full article
Show Figures

Figure 1

16 pages, 4800 KiB  
Article
Remotely Self-Healable, Shapeable and pH-Sensitive Dual Cross-Linked Polysaccharide Hydrogels with Fast Response to Magnetic Field
by Andrey V. Shibaev, Maria E. Smirnova, Darya E. Kessel, Sergey A. Bedin, Irina V. Razumovskaya and Olga E. Philippova
Nanomaterials 2021, 11(5), 1271; https://doi.org/10.3390/nano11051271 - 12 May 2021
Cited by 17 | Viewed by 3459
Abstract
The development of actuators with remote control is important for the construction of devices for soft robotics. The present paper describes a responsive hydrogel of nontoxic, biocompatible, and biodegradable polymer carboxymethyl hydroxypropyl guar with dynamic covalent cross-links and embedded cobalt ferrite nanoparticles. The [...] Read more.
The development of actuators with remote control is important for the construction of devices for soft robotics. The present paper describes a responsive hydrogel of nontoxic, biocompatible, and biodegradable polymer carboxymethyl hydroxypropyl guar with dynamic covalent cross-links and embedded cobalt ferrite nanoparticles. The nanoparticles significantly enhance the mechanical properties of the gel, acting as additional multifunctional non-covalent linkages between the polymer chains. High magnetization of the cobalt ferrite nanoparticles provides to the gel a strong responsiveness to the magnetic field, even at rather small content of nanoparticles. It is demonstrated that labile cross-links in the polymer matrix impart to the hydrogel the ability of self-healing and reshaping as well as a fast response to the magnetic field. In addition, the gel shows pronounced pH sensitivity due to pH-cleavable cross-links. The possibility to use the multiresponsive gel as a magnetic-field-triggered actuator is demonstrated. Full article
Show Figures

Graphical abstract

25 pages, 10341 KiB  
Article
Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application
by Raghvendra Singh Yadav, Anju, Thaiskang Jamatia, Ivo Kuřitka, Jarmila Vilčáková, David Škoda, Pavel Urbánek, Michal Machovský, Milan Masař, Michal Urbánek, Lukas Kalina and Jaromir Havlica
Nanomaterials 2021, 11(5), 1112; https://doi.org/10.3390/nano11051112 - 25 Apr 2021
Cited by 20 | Viewed by 4592
Abstract
Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled [...] Read more.
Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sonochemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield against electromagnetic pollution. The ultra-sonication method has been used for the preparation of nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was studied at a thickness of 1 mm in the range of 8.2–12.4 GHz. The high attenuation constant (α) value of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant, and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves. The outcomes and methods also assure an inventive and competent approach to develop lightweight and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution. Full article
Show Figures

Figure 1

20 pages, 2794 KiB  
Article
Magnetic Properties of Iron Oxide Nanoparticles Do Not Essentially Contribute to Ferrogel Biocompatibility
by Felix A. Blyakhman, Alexander P. Safronov, Emilia B. Makarova, Fedor A. Fadeyev, Tatyana F. Shklyar, Pavel A. Shabadrov, Sergio Fernandez Armas and Galina V. Kurlyandskaya
Nanomaterials 2021, 11(4), 1041; https://doi.org/10.3390/nano11041041 - 19 Apr 2021
Cited by 11 | Viewed by 2760
Abstract
Two series of composite polyacrylamide (PAAm) gels with embedded superparamagnetic Fe2O3 or diamagnetic Al2O3 nanoparticles were synthesized, aiming to study the direct contribution of the magnetic interactions to the ferrogel biocompatibility. The proliferative activity was estimated for [...] Read more.
Two series of composite polyacrylamide (PAAm) gels with embedded superparamagnetic Fe2O3 or diamagnetic Al2O3 nanoparticles were synthesized, aiming to study the direct contribution of the magnetic interactions to the ferrogel biocompatibility. The proliferative activity was estimated for the case of human dermal fibroblast culture grown onto the surfaces of these types of substrates. Spherical non-agglomerated nanoparticles (NPs) of 20–40 nm in diameter were prepared by laser target evaporation (LTE) electrophysical technique. The concentration of the NPs in gel was fixed at 0.0, 0.3, 0.6, or 1.2 wt.%. Mechanical, electrical, and magnetic properties of composite gels were characterized by the dependence of Young’s modulus, electrical potential, magnetization measurements on the content of embedded NPs. The fibroblast monolayer density grown onto the surface of composite substrates was considered as an indicator of the material biocompatibility after 96 h of incubation. Regardless of the superparamagnetic or diamagnetic nature of nanoparticles, the increase in their concentration in the PAAm composite provided a parallel increase in the cell culture proliferation when grown onto the surface of composite substrates. The effects of cell interaction with the nanostructured surface of composites are discussed in order to explain the results. Full article
Show Figures

Figure 1

20 pages, 4763 KiB  
Article
Thiolation of Chitosan Loaded over Super-Magnetic Halloysite Nanotubes for Enhanced Laccase Immobilization
by Avinash A. Kadam, Bharat Sharma, Surendra K. Shinde, Gajanan S. Ghodake, Ganesh D. Saratale, Rijuta G. Saratale, Do-Yeong Kim and Jung-Suk Sung
Nanomaterials 2020, 10(12), 2560; https://doi.org/10.3390/nano10122560 - 20 Dec 2020
Cited by 18 | Viewed by 3601
Abstract
This study focuses on the development of a nanosupport based on halloysite nanotubes (HNTs), Fe3O4 nanoparticles (NPs), and thiolated chitosan (CTs) for laccase immobilization. First, HNTs were modified with Fe3O4 NPs (HNTs-Fe3O4) by [...] Read more.
This study focuses on the development of a nanosupport based on halloysite nanotubes (HNTs), Fe3O4 nanoparticles (NPs), and thiolated chitosan (CTs) for laccase immobilization. First, HNTs were modified with Fe3O4 NPs (HNTs-Fe3O4) by the coprecipitation method. Then, the HNTs-Fe3O4 surface was tuned with the CTs (HNTs-Fe3O4-CTs) by a simple refluxing method. Finally, the HNTs- Fe3O4-CTs surface was thiolated (-SH) (denoted as; HNTs- Fe3O4-CTs-SH) by using the reactive NHS-ester reaction. The thiol-modified HNTs (HNTs- Fe3O4-CTs-SH) were characterized by FE-SEM, HR-TEM, XPS, XRD, FT-IR, and VSM analyses. The HNTs-Fe3O4-CTs-SH was applied for the laccase immobilization. It gave excellent immobilization of laccase with 100% activity recovery and 144 mg/g laccase loading capacity. The immobilized laccase on HNTs-Fe3O4-CTs-SH (HNTs-Fe3O4-CTs-S-S-Laccase) exhibited enhanced biocatalytic performance with improved thermal, storage, and pH stabilities. HNTs-Fe3O4-CTs-S-S-Laccase gave outstanding repeated cycle capability, at the end of the 15th cycle, it kept 61% of the laccase activity. Furthermore, HNTs-Fe3O4-CTs-S-S-Laccase was applied for redox-mediated removal of textile dye DR80 and pharmaceutical compound ampicillin. The obtained result marked the potential of the HNTs-Fe3O4-CTs-S-S-Laccase for the removal of hazardous pollutants. This nanosupport is based on clay mineral HNTs, made from low-cost biopolymer CTs, super-magnetic in nature, and can be applied in laccase-based decontamination of environmental pollutants. This study also gave excellent material HNTs-Fe3O4-CTs-SH for other enzyme immobilization processes. Full article
Show Figures

Figure 1

23 pages, 9371 KiB  
Article
Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxide
by Raghvendra Singh Yadav, Anju, Thaiskang Jamatia, Ivo Kuřitka, Jarmila Vilčáková, David Škoda, Pavel Urbánek, Michal Machovský, Milan Masař, Michal Urbánek, Lukas Kalina and Jaromir Havlica
Nanomaterials 2020, 10(12), 2481; https://doi.org/10.3390/nano10122481 - 10 Dec 2020
Cited by 23 | Viewed by 3834
Abstract
In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O [...] Read more.
In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O4 nanoparticles were controlled by sonochemical synthesis time 20 min, 40 min, 60 min and 80 min. As a result, the electromagnetic interference shielding characteristics of developed nanocomposites MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled by tuning of magnetic/dielectric loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB for the MF80-RGO-PP nanocomposite sample with a thickness of 0.5 mm in the frequency range (8.2–12.4 GHz). This lightweight, flexible and thin nanocomposite sheet based on the appropriate size of MnFe2O4 nanoparticles with reduced graphene oxide demonstrates a high-performance advanced nanocomposite for cutting-edge electromagnetic interference shielding application. Full article
Show Figures

Figure 1

17 pages, 10202 KiB  
Article
Magnetic, Electrical, and Mechanical Behavior of Fe-Al-MWCNT and Fe-Co-Al-MWCNT Magnetic Hybrid Nanocomposites Fabricated by Spark Plasma Sintering
by Alexandre Tugirumubano, Sun Ho Go, Hee Jae Shin, Lee Ku Kwac and Hong Gun Kim
Nanomaterials 2020, 10(3), 436; https://doi.org/10.3390/nano10030436 - 29 Feb 2020
Cited by 12 | Viewed by 2943
Abstract
This paper aims to investigate different properties of the Fe-Al matrix reinforced with multi-walled carbon nanotube (MWCNT) nanocomposites with the Al volume content up to 65%, according to the Fe-Al combination. In addition, the effect of adding Co content on the improvement of [...] Read more.
This paper aims to investigate different properties of the Fe-Al matrix reinforced with multi-walled carbon nanotube (MWCNT) nanocomposites with the Al volume content up to 65%, according to the Fe-Al combination. In addition, the effect of adding Co content on the improvement of the soft magnetic properties of the nanocomposites was carried out. The nanocomposites were fabricated using the powder metallurgy process. The iron-aluminum metal matrix reinforced multi-walled carbon nanotube (Fe-Al-MWCNT) nanocomposites showed a continuous increase of saturation magnetization from 90.70 A·m2/kg to 167.22 A·m2/kg and microhardness, whereas the electrical resistivity dropped as the Al content increased. The incorporation of Co nanoparticles in Fe-Al-MWCNT up to 35 vol% of Co considerably improved the soft magnetic properties of the nanocomposites by reducing the coercivity and retentivity up to 42% and 47%, respectively. The results showed that Al-based magnetic nanocomposites with a high Al volume content can be tailored using ferromagnetic particles. The composites with a volume content of magnetic particles (Fe+Co) greater than 60 vol% exhibited higher saturation magnetization, higher coercivity, and higher retentivity than the standard Sendust core. Moreover, the produced composites can be used for the lightweight magnetic core in electromagnetic devices due to their low density and good magnetic and mechanical properties. Full article
Show Figures

Figure 1

17 pages, 5500 KiB  
Article
An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries
by Martin Friák, Miroslav Golian, David Holec, Nikola Koutná and Mojmír Šob
Nanomaterials 2020, 10(1), 44; https://doi.org/10.3390/nano10010044 - 23 Dec 2019
Cited by 8 | Viewed by 2790
Abstract
We have performed a quantum-mechanical study of a B2 phase of Fe 70 Al 30 alloy with and without antiphase boundaries (APBs) with the {001} crystallographic orientation of APB interfaces. We used a supercell approach with the atoms distributed according to the special [...] Read more.
We have performed a quantum-mechanical study of a B2 phase of Fe 70 Al 30 alloy with and without antiphase boundaries (APBs) with the {001} crystallographic orientation of APB interfaces. We used a supercell approach with the atoms distributed according to the special quasi-random structure (SQS) concept. Our study was motivated by experimental findings by Murakami et al. (Nature Comm. 5 (2014) 4133) who reported significantly higher magnetic flux density from A2-phase interlayers at the thermally-induced APBs in Fe 70 Al 30 and suggested that the ferromagnetism is stabilized by the disorder in the A2 phase. Our computational study of sharp APBs (without any A2-phase interlayer) indicates that they have moderate APB energies (≈0.1 J/m 2 ) and cannot explain the experimentally detected increase in the ferromagnetism because they often induce a ferro-to-ferrimagnetic transition. When studying thermal APBs, we introduce a few atomic layers of A2 phase of Fe 70 Al 30 into the interface of sharp APBs. The averaged computed magnetic moment of Fe atoms in the whole B2/A2 nanocomposite is then increased by 11.5% w.r.t. the B2 phase. The A2 phase itself (treated separately as a bulk) has the total magnetic moment even higher, by 17.5%, and this increase also applies if the A2 phase at APBs is sufficiently thick (the experimental value is 2–3 nm). We link the changes in the magnetism to the facts that (i) the Al atoms in the first nearest neighbor (1NN) shell of Fe atoms nonlinearly reduce their magnetic moments and (ii) there are on average less Al atoms in the 1NN shell of Fe atoms in the A2 phase. These effects synergically combine with the influence of APBs which provide local atomic configurations not existing in an APB-free bulk. The identified mechanism of increasing the magnetic properties by introducing APBs with disordered phases can be used as a designing principle when developing new magnetic materials. Full article
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 7223 KiB  
Review
Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review
by Natalia E. Kazantseva, Ilona S. Smolkova, Vladimir Babayan, Jarmila Vilčáková, Petr Smolka and Petr Saha
Nanomaterials 2021, 11(12), 3402; https://doi.org/10.3390/nano11123402 - 15 Dec 2021
Cited by 12 | Viewed by 3418
Abstract
Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH [...] Read more.
Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH is arterial embolization hyperthermia (AEH), intended for the presurgical treatment of primary inoperable and metastasized solid tumors of parenchymal organs. This method is based on hyperthermia after transcatheter arterial embolization of the tumor’s vascular system with a mixture of magnetic particles and embolic agents. An important advantage of AEH lies in the double effect of embolotherapy, which blocks blood flow in the tumor, and MH, which eradicates cancer cells. Consequently, only the tumor undergoes thermal destruction. This review introduces the progress in the development of polymeric magnetic materials for application in AEH. Full article
Show Figures

Figure 1

Back to TopTop