nutrients-logo

Journal Browser

Journal Browser

The Role of Probiotics and Prebiotics in Immunomodulation

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Prebiotics and Probiotics".

Deadline for manuscript submissions: closed (25 July 2024) | Viewed by 8137

Special Issue Editor


E-Mail Website
Guest Editor
1. School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
2. National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
Interests: probiotics; chronic disease; intestinal microbiota; functional foods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As a new and old health promoter, probiotics and prebiotics play a key role in improving allergies, obesity, inflammatory bowel disease, cancer, mental illness, and other diseases partly via regulating immunity. Probiotics and prebiotics interventions are widely accepted due to their safety and effectiveness.

In this Special Issue, we welcome submissions including high-quality original research articles, clinical studies, and reviews that contribute innovative knowledge to understanding probiotics and prebiotics in host health. This particular focus includes the role of probiotics and prebiotics in health management, disease prevention, disease, and treatment/adjuvant therapy, especially for papers with a depth mechanism and/or those supported by clinical data.

Prof. Dr. Tingtao Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • prebiotics
  • probiotics
  • symbiotics
  • metagenomics
  • metabonomics
  • microbiota
  • immunity and inflammation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 3025 KiB  
Article
The Skin Histopathology of Pro- and Parabiotics in a Mouse Model of Atopic Dermatitis
by Hun Hwan Kim, Se Hyo Jeong, Min Yeong Park, Pritam Bhagwan Bhosale, Abuyaseer Abusaliya, Jeong Doo Heo, Hyun Wook Kim, Je Kyung Seong, Tae Yang Kim, Jeong Woo Park, Byeong Soo Kim and Gon Sup Kim
Nutrients 2024, 16(17), 2903; https://doi.org/10.3390/nu16172903 - 30 Aug 2024
Viewed by 1106
Abstract
As it has been revealed that the activation of human immune cells through the activity of intestinal microorganisms such as pro- and prebiotics plays a vital role, controlling the proliferation of beneficial bacteria and suppressing harmful bacteria in the intestine has become essential. [...] Read more.
As it has been revealed that the activation of human immune cells through the activity of intestinal microorganisms such as pro- and prebiotics plays a vital role, controlling the proliferation of beneficial bacteria and suppressing harmful bacteria in the intestine has become essential. The importance of probiotics, especially for skin health and the immune system, has led to the emergence of products in various forms, including probiotics, prebiotics, and parabiotics. In particular, atopic dermatitis (AD) produces hypersensitive immunosuppressive substances by promoting the differentiation and activity of immune regulatory T cells. As a result, it has been in the Th1 and Th2 immune balance through a mechanism that suppresses skin inflammation or allergic immune responses caused by bacteria. Furthermore, an immune mechanism has recently emerged that simultaneously controls the expression of IL-17 produced by Th17. Therefore, the anti-atopic effect was investigated by administering doses of anti-atopic candidate substances (Lactobacilus sakei CVL-001, Lactobacilus casei MCL, and Lactobacilus sakei CVL-001 Lactobacilus casei MCL mixed at a ratio of 4:3) in an atopy model using 2,4-dinitrochlorobenzene and observing symptom changes for 2 weeks to confirm the effect of pro-, para-, and mixed biotics on AD. First, the body weight and feed intake of the experimental animals were investigated, and total IgG and IgM were confirmed through blood biochemical tests. Afterward, histopathological staining was performed using H&E staining, Toluidine blue staining, Filaggrin staining, and CD8 antibody staining. In the treatment group, the hyperproliferation of the epidermal layer, the inflammatory cell infiltration of the dermal layer, the expression of CD8, the expression of filaggrin, and the secretion of mast cells were confirmed to be significantly reduced. Lastly, small intestine villi were observed through a scanning microscope, and scoring evaluation was performed through skin damage. Through these results, it was confirmed that AD was reduced when treated with pro-, para-, and mixed biotics containing probiotics and parabiotics. Full article
(This article belongs to the Special Issue The Role of Probiotics and Prebiotics in Immunomodulation)
Show Figures

Figure 1

22 pages, 4342 KiB  
Article
Effectiveness of Psychobiotic Bifidobacterium breve BB05 in Managing Psychosomatic Diarrhea in College Students by Regulating Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled Trial
by Yufan Wang, Yufei Wang, Kunpeng Ding, Yuhan Liu, Dingming Liu, Weijun Chen, Xinyi Zhang, Chuanlin Luo, Hongyan Zhang, Tangchang Xu and Tingtao Chen
Nutrients 2024, 16(13), 1989; https://doi.org/10.3390/nu16131989 - 22 Jun 2024
Viewed by 2070
Abstract
Diarrhea of college students (DCS) is a prevalent issue among college students, affecting their daily lives and academic performance. This study aims to explore the potential effect of Bifidobacterium breve BB05 supplements on the DCS. Initially, fifty healthy and fifty diarrheal students were [...] Read more.
Diarrhea of college students (DCS) is a prevalent issue among college students, affecting their daily lives and academic performance. This study aims to explore the potential effect of Bifidobacterium breve BB05 supplements on the DCS. Initially, fifty healthy and fifty diarrheal students were recruited in the observational experiment and allocated into control and diarrhea groups, respectively. Subsequently, one hundred diarrheal students were newly recruited in the intervention experiment and randomly allocated into placebo and probiotic groups, both treated for 2 weeks. Questionnaires (BSS, HAMA-14, and HDRS-17) were performed to assess the students’ diarrheal states and mental health at baseline and post-treatment. Fecal samples underwent 16S rRNA sequencing and Enzyme-Linked Immunosorbent Assay to evaluate gut microbiota and fecal metabolite alternations. Results indicated that B. breve BB05 supplementation significantly enriched (p < 0.05) the reduced gut microbial diversity caused by diarrhea. Diarrhea resulted in notable alterations in gut microbiota composition, as exhibited by elevated Collinsella and Streptococcus, alongside substantially decreased Bifidobacterium, Bacteroides, and Prevotella, while B. breve BB05 supplementation partially restored the compromised gut microbiota at both the phylum and genus levels, particularly by increasing Bifidobacterium and Roseburia (p < 0.05). Importantly, questionnaire results suggested that B. breve BB05 administration achieved superior efficacy in relieving diarrhea symptoms and the associated anxiety and depression in college students. An increased fecal concentration of 5-hydroxytryptamine (5-HT) was also observed in the probiotic group, while Acetylcholine (ACH), Epinephrine (EPI), and Noradrenaline/Norepinephrine (NANE) reduced, revealing the potential of B. breve BB05 in alleviating anxiety and depression via modulating the microbiota–gut–brain axis. Furthermore, correlation analysis suggested that the altered microbiota and fecal neurotransmitters were closely associated with the mental symptoms. These results endorse B. breve BB05 intervention as a promising and innovative approach to alleviate both diarrhea and mental health conditions among college students. Full article
(This article belongs to the Special Issue The Role of Probiotics and Prebiotics in Immunomodulation)
Show Figures

Graphical abstract

15 pages, 4053 KiB  
Article
Lactiplantibacillus plantarum ZDY2013 Inhibits the Development of Non-Alcoholic Fatty Liver Disease by Regulating the Intestinal Microbiota and Modulating the PI3K/Akt Pathway
by Qiang Teng, Huihui Lv, Lingling Peng, Zhongyue Ren, Jiahui Chen, Lixue Ma, Hua Wei and Cuixiang Wan
Nutrients 2024, 16(7), 958; https://doi.org/10.3390/nu16070958 - 27 Mar 2024
Viewed by 1829
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance. Full article
(This article belongs to the Special Issue The Role of Probiotics and Prebiotics in Immunomodulation)
Show Figures

Figure 1

18 pages, 6518 KiB  
Article
Heat-Killed Saccharomyces boulardii Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Restoring the Intestinal Barrier, Reducing Inflammation, and Modulating the Gut Microbiota
by Yuxin Jin, Jingwei Wu, Kunlun Huang and Zhihong Liang
Nutrients 2024, 16(5), 702; https://doi.org/10.3390/nu16050702 - 29 Feb 2024
Cited by 1 | Viewed by 2682
Abstract
Ulcerative colitis (UC) is a global intestinal disease, and conventional therapeutic drugs often fail to meet the needs of patients. There is an urgent need to find efficient and affordable novel biological therapies. Saccharomyces boulardii has been widely used in food and pharmaceutical [...] Read more.
Ulcerative colitis (UC) is a global intestinal disease, and conventional therapeutic drugs often fail to meet the needs of patients. There is an urgent need to find efficient and affordable novel biological therapies. Saccharomyces boulardii has been widely used in food and pharmaceutical research due to its anti-inflammatory properties and gut health benefits. However, there is still a relatively limited comparison and evaluation of different forms of S. boulardii treatment for UC. This study aimed to compare the therapeutic effects of S. boulardii, heat-killed S. boulardii, and S. boulardii β-glucan on UC, to explore the potential of heat-killed S. boulardii as a new biological therapy. The results demonstrate that all three treatments were able to restore body weight, reduce the disease activity index (DAI), inhibit splenomegaly, shorten colon length, and alleviate histopathological damage to colonic epithelial tissues in DSS-induced colitis mice. The oral administration of S. boulardii, heat-killed S. boulardii, and S. boulardii β-glucan also increased the levels of tight junction proteins (Occludin and ZO-1), decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the serum, and suppressed the expressions of TNF-α, IL-1β, and IL-6 mRNA in the colon. In particular, in terms of gut microbiota, S. boulardii, heat-killed S. boulardii, and S. boulardii β-glucan exhibited varying degrees of modulation on DSS-induced dysbiosis. Among them, heat-killed S. boulardii maximally restored the composition, structure, and functionality of the intestinal microbiota to normal levels. In conclusion, heat-killed S. boulardii showed greater advantages over S. boulardii and S. boulardii β-glucan in the treatment of intestinal diseases, and it holds promise as an effective novel biological therapy for UC. This study is of great importance in improving the quality of life for UC patients and reducing the burden of the disease. Full article
(This article belongs to the Special Issue The Role of Probiotics and Prebiotics in Immunomodulation)
Show Figures

Figure 1

Back to TopTop