Biotechnological Advances for Crop Improvement and Sustainable Agriculture

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 3851

Special Issue Editor


E-Mail Website
Guest Editor
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Interests: plant genomics; transcriptomics; bioinformatics; gene discovery; plant pathway curation; gene regulatory networks; nutritional genomics; secondary plant products; pangenomics; space biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The world’s population is increasing day by day and will reach 10 billion by 2050. It is important to produce enough high-quality, nutritious food to feed 10 billion people in the scenario of unpredictable climate change.

Environmental and climate-related hazards, including droughts, floods, and wildfires, led by temperature spikes, will make fertile land scarcer and have a significant impact on agriculture. Therefore, developing crops resilient to environmental stresses with no growth, yield, or nutritional penalties is an important step towards sustainable agriculture. Modern biotechnological, genome editing, high-throughput omics, and breeding techniques can help develop crops with improved traits, varieties, nutritional qualities, and adaptability to environmental stress conditions.

Therefore, this Special Issue aims to provide an understanding of recent technological advancements that improve crop yield under various climatic conditions with no nutritional penalties. This issue has a particular interest in research on genome editing techniques used for crop improvement and nutritional quality, environmental adaptability, biotic/abiotic stress management, genomics and bioinformatic resources, genetic engineering, and plant breeding.

Dr. Parul Gupta
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biotic/abiotic stress
  • plant breeding
  • genome editing
  • CRISPR/Cas
  • genetic engineering
  • mutants and phenotypes
  • genome evolution
  • polyploid genomics
  • crop improvement
  • omics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

31 pages, 4454 KiB  
Article
Exploring Novel Genomic Loci and Candidate Genes Associated with Plant Height in Bulgarian Bread Wheat via Multi-Model GWAS
by Tania Kartseva, Vladimir Aleksandrov, Ahmad M. Alqudah, Matías Schierenbeck, Krasimira Tasheva, Andreas Börner and Svetlana Misheva
Plants 2024, 13(19), 2775; https://doi.org/10.3390/plants13192775 - 3 Oct 2024
Viewed by 751
Abstract
In the context of crop breeding, plant height (PH) plays a pivotal role in determining straw and grain yield. Although extensive research has explored the genetic control of PH in wheat, there remains an opportunity for further advancements by integrating genomics with growth-related [...] Read more.
In the context of crop breeding, plant height (PH) plays a pivotal role in determining straw and grain yield. Although extensive research has explored the genetic control of PH in wheat, there remains an opportunity for further advancements by integrating genomics with growth-related phenomics. Our study utilizes the latest genome-wide association scan (GWAS) techniques to unravel the genetic basis of temporal variation in PH across 179 Bulgarian bread wheat accessions, including landraces, tall historical, and semi-dwarf modern varieties. A GWAS was performed with phenotypic data from three growing seasons, the calculated best linear unbiased estimators, and the leveraging genotypic information from the 25K Infinium iSelect array, using three statistical methods (MLM, FarmCPU, and BLINK). Twenty-five quantitative trait loci (QTL) associated with PH were identified across fourteen chromosomes, encompassing 21 environmentally stable quantitative trait nucleotides (QTNs), and four haplotype blocks. Certain loci (17) on chromosomes 1A, 1B, 1D, 2A, 2D, 3A, 3B, 4A, 5B, 5D, and 6A remain unlinked to any known Rht (Reduced height) genes, QTL, or GWAS loci associated with PH, and represent novel regions of potential breeding significance. Notably, these loci exhibit varying effects on PH, contribute significantly to natural variance, and are expressed during seedling to reproductive stages. The haplotype block on chromosome 6A contains five QTN loci associated with reduced height and two loci promoting height. This configuration suggests a substantial impact on natural variation and holds promise for accurate marker-assisted selection. The potentially novel genomic regions harbor putative candidate gene coding for glutamine synthetase, gibberellin 2-oxidase, auxin response factor, ethylene-responsive transcription factor, and nitric oxide synthase; cell cycle-related genes, encoding cyclin, regulator of chromosome condensation (RCC1) protein, katanin p60 ATPase-containing subunit, and expansins; genes implicated in stem mechanical strength and defense mechanisms, as well as gene regulators such as transcription factors and protein kinases. These findings enrich the pool of semi-dwarfing gene resources, providing the potential to further optimize PH, improve lodging resistance, and achieve higher grain yields in bread wheat. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 1559 KiB  
Review
Unleashing the Potential of CRISPR/Cas9 Genome Editing for Yield-Related Traits in Rice
by Archana Thiruppathi, Shubham Rajaram Salunkhe, Shobica Priya Ramasamy, Rakshana Palaniswamy, Veera Ranjani Rajagopalan, Sakthi Ambothi Rathnasamy, Senthil Alagarswamy, Manonmani Swaminathan, Sudha Manickam and Raveendran Muthurajan
Plants 2024, 13(21), 2972; https://doi.org/10.3390/plants13212972 - 24 Oct 2024
Viewed by 734
Abstract
Strategies to enhance rice productivity in response to global demand have been the paramount focus of breeders worldwide. Multiple factors, including agronomical traits such as plant architecture and grain formation and physiological traits such as photosynthetic efficiency and NUE (nitrogen use efficiency), as [...] Read more.
Strategies to enhance rice productivity in response to global demand have been the paramount focus of breeders worldwide. Multiple factors, including agronomical traits such as plant architecture and grain formation and physiological traits such as photosynthetic efficiency and NUE (nitrogen use efficiency), as well as factors such as phytohormone perception and homeostasis and transcriptional regulation, indirectly influence rice grain yield. Advances in genetic analysis methodologies and functional genomics, numerous genes, QTLs (Quantitative Trait Loci), and SNPs (Single-Nucleotide Polymorphisms), linked to yield traits, have been identified and analyzed in rice. Genome editing allows for the targeted modification of identified genes to create novel mutations in rice, avoiding the unintended mutations often caused by random mutagenesis. Genome editing technologies, notably the CRISPR/Cas9 system, present a promising tool to generate precise and rapid modifications in the plant genome. Advancements in CRISPR have further enabled researchers to modify a larger number of genes with higher efficiency. This paper reviews recent research on genome editing of yield-related genes in rice, discusses available gene editing tools, and highlights their potential to expedite rice breeding programs. Full article
Show Figures

Figure 1

20 pages, 1208 KiB  
Review
Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance
by Abdelrahman Shawky, Abdulrahman Hatawsh, Nabil Al-Saadi, Raed Farzan, Nour Eltawy, Mariz Francis, Sara Abousamra, Yomna Y. Ismail, Kotb Attia, Abdulaziz S. Fakhouri and Mohamed Abdelrahman
Plants 2024, 13(16), 2269; https://doi.org/10.3390/plants13162269 - 15 Aug 2024
Viewed by 1878
Abstract
Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, [...] Read more.
Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress. Full article
Show Figures

Figure 1

Back to TopTop