sensors-logo

Journal Browser

Journal Browser

Sensors and Algorithms for 3D Visual Analysis and SLAM

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 11697

Special Issue Editor


E-Mail Website
Guest Editor
Department of Electrical and Computer Engineering, University of North Carolina-Charlotte, Charlotte, NC 28223-0001, USA
Interests: computer vision; pattern recognition; image processing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The successful development of critical future technologies hinge on the analysis algorithms that take as input unorganized collections of sensed visual data, quickly and reliably process these measurements, and extract models that organize, integrate, and semantically explain the sensor data. This Special Issue invites submissions that describe novel academic research that investigates 3D sensing technologies and algorithms that extract 3D visual, geometric, or semantic information.

Dr. Andrew R. Willis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D SLAM
  • distributed 3D SLAM
  • structure from motion (SfM)
  • 3D motion planning
  • 3D view planning
  • 3D object recognition
  • 3D scene recognition
  • 3D semantic completion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 9403 KiB  
Article
DIO-SLAM: A Dynamic RGB-D SLAM Method Combining Instance Segmentation and Optical Flow
by Lang He, Shiyun Li, Junting Qiu and Chenhaomin Zhang
Sensors 2024, 24(18), 5929; https://doi.org/10.3390/s24185929 - 12 Sep 2024
Viewed by 1018
Abstract
Feature points from moving objects can negatively impact the accuracy of Visual Simultaneous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based VSLAM approaches often fail to accurately determine the true motion state of objects. To address this challenge, this paper introduces [...] Read more.
Feature points from moving objects can negatively impact the accuracy of Visual Simultaneous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based VSLAM approaches often fail to accurately determine the true motion state of objects. To address this challenge, this paper introduces DIO-SLAM: Dynamic Instance Optical Flow SLAM, a VSLAM system specifically designed for dynamic environments. Initially, the detection thread employs YOLACT (You Only Look At CoefficienTs) to distinguish between rigid and non-rigid objects within the scene. Subsequently, the optical flow thread estimates optical flow and introduces a novel approach to capture the optical flow of moving objects by leveraging optical flow residuals. Following this, an optical flow consistency method is implemented to assess the dynamic nature of rigid object mask regions, classifying them as either moving or stationary rigid objects. To mitigate errors caused by missed detections or motion blur, a motion frame propagation method is employed. Lastly, a dense mapping thread is incorporated to filter out non-rigid objects using semantic information, track the point clouds of rigid objects, reconstruct the static background, and store the resulting map in an octree format. Experimental results demonstrate that the proposed method surpasses current mainstream dynamic VSLAM techniques in both localization accuracy and real-time performance. Full article
(This article belongs to the Special Issue Sensors and Algorithms for 3D Visual Analysis and SLAM)
Show Figures

Figure 1

19 pages, 2399 KiB  
Article
Accurate 3D LiDAR SLAM System Based on Hash Multi-Scale Map and Bidirectional Matching Algorithm
by Tingchen Ma, Lingxin Kong, Yongsheng Ou and Sheng Xu
Sensors 2024, 24(12), 4011; https://doi.org/10.3390/s24124011 - 20 Jun 2024
Viewed by 1141
Abstract
Simultaneous localization and mapping (SLAM) is a hot research area that is widely required in many robotics applications. In SLAM technology, it is essential to explore an accurate and efficient map model to represent the environment and develop the corresponding data association methods [...] Read more.
Simultaneous localization and mapping (SLAM) is a hot research area that is widely required in many robotics applications. In SLAM technology, it is essential to explore an accurate and efficient map model to represent the environment and develop the corresponding data association methods needed to achieve reliable matching from measurements to maps. These two key elements impact the working stability of the SLAM system, especially in complex scenarios. However, previous literature has not fully addressed the problems of efficient mapping and accurate data association. In this article, we propose a novel hash multi-scale (H-MS) map to ensure query efficiency with accurate modeling. In the proposed map, the inserted map point will simultaneously participate in modeling voxels of different scales in a voxel group, enabling the map to represent objects of different scales in the environment effectively. Meanwhile, the root node of the voxel group is saved to a hash table for efficient access. Secondly, considering the one-to-many (1 ×103 order of magnitude) high computational data association problem caused by maintaining multi-scale voxel landmarks simultaneously in the H-MS map, we further propose a bidirectional matching algorithm (MSBM). This algorithm utilizes forward–reverse–forward projection to balance the efficiency and accuracy problem. The proposed H-MS map and MSBM algorithm are integrated into a completed LiDAR SLAM (HMS-SLAM) system. Finally, we validated the proposed map model, matching algorithm, and integrated system on the public KITTI dataset. The experimental results show that, compared with the ikd tree map, the H-MS map model has higher insertion and deletion efficiency, both having O(1) time complexity. The computational efficiency and accuracy of the MSBM algorithm are better than that of the small-scale priority matching algorithm, and the computing speed of the MSBM achieves 49 ms/time under a single CPU thread. In addition, the HMS-SLAM system built in this article has also reached excellent performance in terms of mapping accuracy and memory usage. Full article
(This article belongs to the Special Issue Sensors and Algorithms for 3D Visual Analysis and SLAM)
Show Figures

Figure 1

22 pages, 26831 KiB  
Article
UAV-Borne Mapping Algorithms for Low-Altitude and High-Speed Drone Applications
by Jincheng Zhang, Artur Wolek and Andrew R. Willis
Sensors 2024, 24(7), 2204; https://doi.org/10.3390/s24072204 - 29 Mar 2024
Cited by 2 | Viewed by 1360
Abstract
This article presents an analysis of current state-of-the-art sensors and how these sensors work with several mapping algorithms for UAV (Unmanned Aerial Vehicle) applications, focusing on low-altitude and high-speed scenarios. A new experimental construct is created using highly realistic environments made possible by [...] Read more.
This article presents an analysis of current state-of-the-art sensors and how these sensors work with several mapping algorithms for UAV (Unmanned Aerial Vehicle) applications, focusing on low-altitude and high-speed scenarios. A new experimental construct is created using highly realistic environments made possible by integrating the AirSim simulator with Google 3D maps models using the Cesium Tiles plugin. Experiments are conducted in this high-realism simulated environment to evaluate the performance of three distinct mapping algorithms: (1) Direct Sparse Odometry (DSO), (2) Stereo DSO (SDSO), and (3) DSO Lite (DSOL). Experimental results evaluate algorithms based on their measured geometric accuracy and computational speed. The results provide valuable insights into the strengths and limitations of each algorithm. Findings quantify compromises in UAV algorithm selection, allowing researchers to find the mapping solution best suited to their application, which often requires a compromise between computational performance and the density and accuracy of geometric map estimates. Results indicate that for UAVs with restrictive computing resources, DSOL is the best option. For systems with payload capacity and modest compute resources, SDSO is the best option. If only one camera is available, DSO is the option to choose for applications that require dense mapping results. Full article
(This article belongs to the Special Issue Sensors and Algorithms for 3D Visual Analysis and SLAM)
Show Figures

Figure 1

16 pages, 746 KiB  
Article
An Adaptive ORB-SLAM3 System for Outdoor Dynamic Environments
by Qiuyu Zang, Kehua Zhang, Ling Wang and Lintong Wu
Sensors 2023, 23(3), 1359; https://doi.org/10.3390/s23031359 - 25 Jan 2023
Cited by 10 | Viewed by 7276
Abstract
Recent developments in robotics have heightened the need for visual SLAM. Dynamic objects are a major problem in visual SLAM which reduces the accuracy of localization due to the wrong epipolar geometry. This study set out to find a new method to address [...] Read more.
Recent developments in robotics have heightened the need for visual SLAM. Dynamic objects are a major problem in visual SLAM which reduces the accuracy of localization due to the wrong epipolar geometry. This study set out to find a new method to address the low accuracy of visual SLAM in outdoor dynamic environments. We propose an adaptive feature point selection system for outdoor dynamic environments. Initially, we utilize YOLOv5s with the attention mechanism to obtain a priori dynamic objects in the scene. Then, feature points are selected using an adaptive feature point selector based on the number of a priori dynamic objects and the percentage of a priori dynamic objects occupied in the frame. Finally, dynamic regions are determined using a geometric method based on Lucas-Kanade optical flow and the RANSAC algorithm. We evaluate the accuracy of our system using the KITTI dataset, comparing it to various dynamic feature point selection strategies and DynaSLAM. Experiments show that our proposed system demonstrates a reduction in both absolute trajectory error and relative trajectory error, with a maximum reduction of 39% and 30%, respectively, compared to other systems. Full article
(This article belongs to the Special Issue Sensors and Algorithms for 3D Visual Analysis and SLAM)
Show Figures

Figure 1

Back to TopTop