Topic Editors

Pharmaceutical Botanical Garden Fran Kušan, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, HR-21000 Split, Croatia
Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia

Plants Volatile Compounds

Abstract submission deadline
closed (31 December 2023)
Manuscript submission deadline
closed (30 April 2024)
Viewed by
21724

Topic Information

Dear Colleagues,

One of the most interesting groups of secondary plant metabolites are the volatile compounds (VCs). VCs such as essential oils and hydrosols exhibit a high vapor pressure at room temperature and a low water solubility. They are responsible for the odor of plants and play an important role in the communication between plants and animals. Some of them protect plants from herbivores, while others attract pollinators. VCs show different biological effects such as antioxidant, antimicrobial, anti-parasitic, anti-inflammatory and antiproliferative effect. They are widely used as natural ingredients in herbal cosmetics and in pharmaceutical preparations such as spasmodic, antispasmodic, antipyretic, carminative, bronchodilator or antiseptic agents.

This topic focuses on the different types of VCs, sites of their production in plants, such as glandular trichomes, and their biological activity including antiviral, antimicrobial, anti-parasitic, antioxidant and others.

Dr. Dario Kremer
Prof. Dr. Igor Jerković
Prof. Dr. Valerija Dunkić
Topic Editors

Keywords

  • volatile compounds
  • plant secondary metabolites
  • pharmaceutical
  • natural ingredients

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Antioxidants
antioxidants
6.0 10.6 2012 15.5 Days CHF 2900
International Journal of Plant Biology
ijpb
- 2.0 2010 19.2 Days CHF 1200
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700
Pharmaceuticals
pharmaceuticals
4.3 6.1 2004 12.8 Days CHF 2900
Plants
plants
4.0 6.5 2012 18.2 Days CHF 2700

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (10 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
22 pages, 1090 KiB  
Review
Aerobiology of the Family Lamiaceae: Novel Perspectives with Special Reference to Volatiles Emission
by Robert Adrian Haas, Ioana Crișan, Dan Vârban and Rodica Vârban
Plants 2024, 13(12), 1687; https://doi.org/10.3390/plants13121687 - 18 Jun 2024
Viewed by 1095
Abstract
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view [...] Read more.
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, β-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

18 pages, 1150 KiB  
Article
Plant In Vitro Cultures of Coleus scutellarioides (L.) Benth. “Electric Lime” and Possibilities of Modification in the Biosynthesis of Volatile Compounds
by Maciej Jakobina, Jacek Łyczko, Antoni Szumny and Renata Galek
Molecules 2024, 29(10), 2193; https://doi.org/10.3390/molecules29102193 - 8 May 2024
Viewed by 1631
Abstract
Coleus scutellarioides (L.) Benth. is a globally spread species, known for its characteristic spectacularly colorful leaves of decorative value. Thanks to its rich chemical composition, the plant is used in ethnopharmacology, and it is also regarded as having high medicinal potential. The application [...] Read more.
Coleus scutellarioides (L.) Benth. is a globally spread species, known for its characteristic spectacularly colorful leaves of decorative value. Thanks to its rich chemical composition, the plant is used in ethnopharmacology, and it is also regarded as having high medicinal potential. The application of in vitro cultures enables the acquisition of homogeneous certified material of high quality. Additionally, excluding the effect of biotic and abiotic factors on the plants is a way to fully recognize the influence of phytohormones on the plant morphology and the biosynthetic pathways of compound production. The best way to grow C. scutellarioides “Electric Lime” under in vitro conditions is to use the basic MS medium (Murashige and Skoog medium), enriched with naphthyl-1-acetic acid at a concentration of 0.5 mg dm−3. The analysis of volatile compounds demonstrated that the content of volatile compounds in the plants cultivated under in vivo conditions was expressed at a level of 2848.59 µg g−1, whereas in the plants bred in vitro without supplementation with phytohormones, the level was 8191.47 µg g−1. The highest content was noted for copaene, α-pinene, 1-octene-3-ol, α-selinene, sabinen, γ- and δ-cadinene, 3-octanol, and β-pinene. Aroma profiling revealed a lack of boranyl acetate, 2-hexenal, and 2-hexen-1-ol in the plants cultivated under in vivo conditions. Differences were found in the volatile composition between plants bred in vivo and in vitro, with the most significant recorded for the contents of 1-octen-3-ol and 3-octanol. The addition of plant growth regulators into the basic medium under in vitro conditions affected the percentage ratio and contents of specific compounds in plant tissues. The most intense biosynthesis of volatile compounds took place in the plants cultivated on the medium enriched with NAA at 10,579.11 µg g−1, whereas the least intense was noted for plants cultivated on the medium supplemented with BA, where it was recorded at the level of 5610.02 µg g−1. So far, there has been no research published which would pertain to the profiling of volatile compounds performed using the SPME (solid-phase microextraction) technique. Moreover, the very few studies conducted on the chemical composition of these compounds do not mention the specific variety of C. scutellarioides under analysis. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

17 pages, 4402 KiB  
Article
Variation in the Floral Scent Chemistry of Nymphaea ‘Eldorado’, a Valuable Water Lily, with Different Flowering Stages and Flower Parts
by Qi Zhou, Feng Zhao, Man Shi, Huihui Zhang and Zunling Zhu
Plants 2024, 13(7), 939; https://doi.org/10.3390/plants13070939 - 24 Mar 2024
Cited by 1 | Viewed by 1540
Abstract
Nymphaea ‘Eldorado’, a valuable water lily, is a well-known fragrant plant in China. Studying the temporal and spatial characteristics of the floral components of this plant can provide a reference for the further development and utilization of water lily germplasm resources. In this [...] Read more.
Nymphaea ‘Eldorado’, a valuable water lily, is a well-known fragrant plant in China. Studying the temporal and spatial characteristics of the floral components of this plant can provide a reference for the further development and utilization of water lily germplasm resources. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC-MS) was used to explore the types and relative contents of floral components at different flowering stages (S1: bud stage; S2: initial-flowering stage; S3: full-flowering stage; S4: end-flowering stage) and in different floral organs of N. ‘Elidorado’, combined with the observation of the microscopic structure of petals. A total of 60 volatile organic compounds (VOCs) were detected at different flowering stages, and there were significant differences in floral VOCs at different flowering stages and in different flower organs. The volatile compounds of N. ‘Eldorado’ can be divided into seven chemical classes,, namely, alkenes, alcohols, esters, aldehydes, ketones, alkanes, and others; the most common were alkenes and alkanes. A total of 39, 44, 47, and 42 volatile compounds were detected at S1, S2, S3, and S4. The VOCs present in high concentrations include benzaldehyde, benzyl alcohol, benzyl acetate, trans-α-bergamotene, α-curcumene, cis-α-farnesene, and so on. The types and total contents of volatiles at the full-flowering stage were higher than at other flowering stages. Comparing the VOCs in different parts of flower organs, it was found that the contents of alcohols, esters, and aldehydes were greatest in the petals, the alkenes in stamens were abundant with a relative content of up to 54.93%, and alkanes in the pistil were higher than in other parts. The types and total contents of volatiles in the stamens of N. ‘Eldorado’ were higher than those in other flower organs; they were the main part releasing fragrance. The observation of petal microstructure revealed that the size and quantity of the papillae on the epidermises of petals, the number of intracellular plastids, and the aggregates of floral components (osmophilic matrix granules) were significantly higher at the full-flowering stage than at the other flowering stages. This study suggested the main flowering stage and location at which the floral VOCs are released by N. ‘Eldorado’ and provided a reference for guiding the breeding of this water lily, exploring genetic patterns and developing related products. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

15 pages, 5892 KiB  
Article
Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers
by Qin Peng, Wenkai Tao, Fangyuan Yu, Qinqin Xiong, Chunshi Nong, Wangxiang Zhang and Junjun Fan
Plants 2024, 13(5), 631; https://doi.org/10.3390/plants13050631 - 25 Feb 2024
Cited by 1 | Viewed by 1647
Abstract
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol [...] Read more.
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. ‘Praire Rose’ and BA in M. ‘Lollipop’ occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. ‘Praire Rose’ and M. ‘Lollipop’ were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. ‘Praire Rose’. The production of BA in M. ‘Lollipop’ was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. ‘Praire Rose’) and BA (M. ‘Lollipop’), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. ‘Praire Rose’) and BA (M. ‘Lollipop’) formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

17 pages, 6162 KiB  
Article
Antifungal Activity of Cedrol from Cunninghamia lanceolate var. konishii against Phellinus noxius and Its Mechanism
by Wen-Wei Hsiao, Ka-Man Lau, Shih-Chang Chien, Fang-Hua Chu, Wen-Hsin Chung and Sheng-Yang Wang
Plants 2024, 13(2), 321; https://doi.org/10.3390/plants13020321 - 21 Jan 2024
Cited by 1 | Viewed by 2276
Abstract
Phellinus noxius is a highly destructive fungus that causes brown root disease in trees, leading to decay and death. In Taiwan, five prized woods—Taiwania cryptomerioides, Calocedrus macrolepis var. formosana, Cunninghamia lanceolata var. konishii, Chamaecyparis formosensis, and Chamaecyparis obtusa [...] Read more.
Phellinus noxius is a highly destructive fungus that causes brown root disease in trees, leading to decay and death. In Taiwan, five prized woods—Taiwania cryptomerioides, Calocedrus macrolepis var. formosana, Cunninghamia lanceolata var. konishii, Chamaecyparis formosensis, and Chamaecyparis obtusa var. formosana—are known for their fragrance and durability. This study aims to explore the anti-brown-root-rot-fungus activity of Cunninghamia lanceolata var. konishii (CL) essential oil (CLOL) and its primary components, while also delving into their mechanisms of action and inhibition pathways. The essential oil (CLOL) from CL wood demonstrated significant efficacy against P. noxius, with an inhibitory concentration (IC50) of 37.5 µg/mL. Cedrol, the major component (78.48%) in CLOL, emerged as a potent antifungal agent, surpassing the reference drug triflumizole. Further assays with cedrol revealed a stronger anti-brown-root-disease activity (IC50 = 15.7 µg/mL) than triflumizole (IC50 = 32.1 µg/mL). Scanning electron microscopy showed deformation and rupture of fungal hyphae treated with CLOL and cedrol, indicating damage to the fungal cell membrane. Cedrol-induced oxidative stress in P. noxius was evidenced by increased reactive oxygen species (ROS) levels, leading to DNA fragmentation, mitochondrial membrane potential reduction, and fungal apoptosis through the mitochondrial pathway. Gel electrophoresis confirmed cedrol-induced DNA fragmentation, whereas TUNEL staining demonstrated increased apoptosis with rising cedrol concentrations. Moreover, protein expression analysis revealed cedrol-triggered release of cytochrome c, activation of caspase-9, and subsequent caspase-3 activation, initiating a caspase cascade reaction. This groundbreaking study establishes cedrol as the first compound to induce apoptosis in P. noxius while inhibiting its growth through oxidative stress, an increase in mitochondrial membrane permeability, and activation of the mitochondrial pathway. The findings offer compelling evidence for cedrol’s potential as an effective antifungal agent against the destructive brown root disease caused by P. noxius. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

16 pages, 1818 KiB  
Article
Significant Benefits of Environmentally Friendly Hydrosols from Tropaeolum majus L. Seeds with Multiple Biological Activities
by Ivana Vrca, Blaž Jug, Željana Fredotović, Elma Vuko, Valentina Brkan, Loriana Šestić, Lea Juretić, Valerija Dunkić, Marija Nazlić, Dina Ramić, Sonja Smole Možina and Dario Kremer
Plants 2023, 12(22), 3897; https://doi.org/10.3390/plants12223897 - 18 Nov 2023
Cited by 4 | Viewed by 2602
Abstract
Tropaeolum majus L. is a traditional medicinal plant with a wide range of biological activities due to the degradation products of the glucosinolate glucotropaeolin. Therefore, the goals of this study were to identify volatiles using gas chromatography–mass spectrometry analysis (GC-MS) of the hydrosols [...] Read more.
Tropaeolum majus L. is a traditional medicinal plant with a wide range of biological activities due to the degradation products of the glucosinolate glucotropaeolin. Therefore, the goals of this study were to identify volatiles using gas chromatography–mass spectrometry analysis (GC-MS) of the hydrosols (HYs) isolated using microwave-assisted extraction (MAE) and microwave hydrodiffusion and gravity (MHG). Cytotoxic activity was tested against a cervical cancer cell line (HeLa), human colon cancer cell line (HCT116), human osteosarcoma cell line (U2OS), and healthy cell line (RPE1). The effect on wound healing was investigated using human keratinocyte cells (HaCaT), while the antibacterial activity of the HYs was tested against growth and adhesion to a polystyrene surface of Staphylococcus aureus and Escherichia coli. Antiphytoviral activity against tobacco mosaic virus (TMV) was determined. The GC-MS analysis showed that the two main compounds in the HYs of T. majus are benzyl isothiocyanate (BITC) and benzyl cyanide (BCN) using the MAE (62.29% BITC and 15.02% BCN) and MHG (17.89% BITC and 65.33% BCN) extraction techniques. The HYs obtained using MAE showed better cytotoxic activity against the tested cancer cell lines (IC50 value of 472.61–637.07 µg/mL) compared to the HYs obtained using MHG (IC50 value of 719.01–1307.03 μg/mL). Both concentrations (5 and 20 µg/mL) of T. majus HYs using MAE showed a mild but statistically non-significant effect in promoting gap closure compared with untreated cells, whereas the T. majus HY isolated using MHG at a concentration of 15 µg/mL showed a statistically significant negative effect on wound healing. The test showed that the MIC concentration was above 0.5 mg/mL for the HY isolated using MAE, and 2 mg/mL for the HY isolated using MHG. The HY isolated using MHG reduced the adhesion of E. coli at a concentration of 2 mg/mL, while it also reduced the adhesion of S. aureus at a concentration of 1 mg/mL. Both hydrosols showed excellent antiphytoviral activity against TMV, achieving100% inhibition of local lesions on the leaves of infected plants, which is the first time such a result was obtained with a hydrosol treatment. Due to the antiphytoviral activity results, hydrosols of T. majus have a promising future for use in agricultural production. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

23 pages, 2506 KiB  
Article
Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts
by Katarina Smiljanić, Ivana Prodić, Sara Trifunovic, Maja Krstić Ristivojević, Milica Aćimović, Jovana Stanković Jeremić, Biljana Lončar and Vele Tešević
Antioxidants 2023, 12(11), 1988; https://doi.org/10.3390/antiox12111988 - 9 Nov 2023
Cited by 6 | Viewed by 1662
Abstract
As byproducts of essential oil distillation, hydrolates are used in natural cosmetics/biomedicine due to their beneficial skin effects. However, data on their safety with relevant biological targets, such as human skin cells, are scarce. Therefore, we have tested nine hydrolates from the Lamiaceae [...] Read more.
As byproducts of essential oil distillation, hydrolates are used in natural cosmetics/biomedicine due to their beneficial skin effects. However, data on their safety with relevant biological targets, such as human skin cells, are scarce. Therefore, we have tested nine hydrolates from the Lamiaceae family with skin fibroblasts that are responsible for extracellular collagenous matrix builds. Thyme, oregano, and winter savoury hydrolates showed several times higher total phenolics, which correlated strongly with their radical scavenging and antioxidative capacity; there was no correlation between their viability profiles and the reducing sugar levels. No proteins/peptides were detected. All hydrolates appeared safe for prolonged skin exposure except for 10-fold diluted lavender, which showed cytotoxicity (~20%), as well as rosemary and lavandin (~10%) using viability, DNA synthesis, and cell count testing. Clary sage, oregano, lemon balm, and thyme hydrolates (10-fold diluted) increased fibroblast viability and/or proliferation by 10–30% compared with the control, while their viability remained unaffected by Mentha and winter savoury. In line with the STITCH database, increased viability could be attributed to thymol presence in oregano and thyme hydrolates in lemon balm, which is most likely attributable to neral and geranial. The proliferative effect of clary sage could be supported by alpha-terpineol, not linalool. The major volatile organic compounds (VOCs) associated with cytotoxic effects on fibroblasts were borneol, 1,8-cineole, and terpinene-4-ol. Further research with pure compounds is warranted to confirm the roles of VOCs in the observed effects that are relevant to cosmetic and wound healing aspects. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

14 pages, 1817 KiB  
Article
Chemical Characterization and Chemotaxonomic Significance of Essential Oil Constituents of Matricaria aurea Grown in Two Different Agro-Climatic Conditions
by Merajuddin Khan, Mujeeb Khan, Eman Alshareef, Shatha Ibrahim Alaqeel and Hamad Z. Alkhathlan
Plants 2023, 12(20), 3553; https://doi.org/10.3390/plants12203553 - 12 Oct 2023
Cited by 4 | Viewed by 1526
Abstract
A comprehensive study on chemical characterization of essential oil (EO) constituents of a rarely explored plant species (Matricaria aurea) of the Asteraceae family grown in Saudi Arabia and Jordan was carried out. Analyses were conducted employing gas chromatographic approaches such as [...] Read more.
A comprehensive study on chemical characterization of essential oil (EO) constituents of a rarely explored plant species (Matricaria aurea) of the Asteraceae family grown in Saudi Arabia and Jordan was carried out. Analyses were conducted employing gas chromatographic approaches such as GC-MS, GC-FID, and Co-GC, as well as RT, LRI determination, and database and literature comparisons, on two diverse stationary phase columns, which led to the identification of a total of 135 constituents from both EOs. Oxygenated sesquiterpenes were found to be the most predominant chemical class of Saudi M. aurea EOs, in which α-bisabolol (27.8%), γ-gurjunenepoxide (21.7%), (E, E)-α-farnesene (16.3%), and cis-spiroether (7.5%) were present as major components. In contrast, the most dominant chemical class of Jordanian M. aurea oil was found to be sesquiterpene hydrocarbons, where (E, E)-α-farnesene (50.2%), γ-gurjunenepoxide (8.5%), (E)-β-farnesene (8.1%), and (Z, E)-α-farnesene (4.4%) were detected as chief constituents. It is interesting to mention here that Saudi and Jordanian M. aurea EOs showed quite interesting chemical compositions and were found to have different chemotypes when compared to previously reported M. aurea EO compositions. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

16 pages, 1073 KiB  
Review
Environmental Factors Affecting Monoterpene Emissions from Terrestrial Vegetation
by Tanzil Gaffar Malik, Lokesh Kumar Sahu, Mansi Gupta, Bilal Ahmad Mir, Triratnesh Gajbhiye, Rashmi Dubey, Andrea Clavijo McCormick and Sudhir Kumar Pandey
Plants 2023, 12(17), 3146; https://doi.org/10.3390/plants12173146 - 31 Aug 2023
Cited by 8 | Viewed by 3074
Abstract
Monoterpenes are volatile organic compounds that play important roles in atmospheric chemistry, plant physiology, communication, and defense. This review compiles the monoterpene emission flux data reported for different regions and plant species and highlights the role of abiotic environmental factors in controlling the [...] Read more.
Monoterpenes are volatile organic compounds that play important roles in atmospheric chemistry, plant physiology, communication, and defense. This review compiles the monoterpene emission flux data reported for different regions and plant species and highlights the role of abiotic environmental factors in controlling the emissions of biogenic monoterpenes and their emission fluxes for terrestrial plant species (including seasonal variations). Previous studies have demonstrated the role and importance of ambient air temperature and light in controlling monoterpene emissions, likely contributing to higher monoterpene emissions during the summer season in temperate regions. In addition to light and temperature dependence, other important environmental variables such as carbon dioxide (CO2), ozone (O3), soil moisture, and nutrient availability are also known to influence monoterpene emissions rates, but the information available is still limited. Throughout the paper, we identify knowledge gaps and provide recommendations for future studies. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Sage, Rosemary, and Bay Laurel Hydrodistillation By-Products as a Source of Bioactive Compounds
by Anđela Miljanović, Maja Dent, Dorotea Grbin, Sandra Pedisić, Zoran Zorić, Zvonimir Marijanović, Igor Jerković and Ana Bielen
Plants 2023, 12(13), 2394; https://doi.org/10.3390/plants12132394 - 21 Jun 2023
Cited by 11 | Viewed by 2597
Abstract
Essential oils from Mediterranean wild plants are widely used, but the hydrodistillation residues produced in parallel with these essential oils are significantly understudied and underexploited. Since there are only fragmentary data in the literature, we have, for the first time, systematically analyzed the [...] Read more.
Essential oils from Mediterranean wild plants are widely used, but the hydrodistillation residues produced in parallel with these essential oils are significantly understudied and underexploited. Since there are only fragmentary data in the literature, we have, for the first time, systematically analyzed the chemical composition of the by-products obtained after hydrodistillation of sage, bay laurel, and rosemary leaves, i.e., hydrolates, water residues, and solid residues. The chemical composition of the hydrolates changed compared to their respective essential oils towards the dominance of more hydrophilic, oxygenated compounds, such as camphor in sage, 1,8-cineole in bay laurel, and berbenone in rosemary. However, some compounds, mostly sesquiterpenes, which were present in considerable amounts in essential oils, were absent or only present in very small amounts in the hydrolates. Furthermore, both the water and the solid residues were rich in polyphenols, such as procyanidins in bay laurel and rosmarinic acid in rosemary and sage. In conclusion, we demonstrate the valuable chemical composition of sage, rosemary, and bay laurel hydrodistillation by-products and discuss a wide range of their possible applications. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

Back to TopTop