Effects of Amount and Profile of Amino Acids Supply on Lactation Performance, Mammary Gland Metabolism, and Nitrogen Efficiency in Holstein Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Statistical Analysis
3. Results
3.1. Diets and Infusion Solutions
3.2. Animal Performance
3.3. Mammary Metabolism
4. Discussion
4.1. Animal Performance
4.2. Mammary Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dijkstra, J.; Reynolds, C.K.; Kebreab, E.; Bannink, A.; Ellis, J.L.; France, J.; van Vuuren, A.M. Challenges in ruminant nutrition: Towards minimal nitrogen losses in cattle. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; Oltjen, W.J., Kebreab, E., Lapierre, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 47–58. [Google Scholar]
- Huhtanen, P.; Hristov, A.N. A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows. J. Dairy Sci. 2009, 92, 3222–3232. [Google Scholar] [CrossRef]
- Arriola Apelo, S.I.; Knapp, J.R.; Hanigan, M.D. Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow. J. Dairy Sci. 2014, 97, 4000–4017. [Google Scholar] [CrossRef] [Green Version]
- Hanigan, M.D.; Crompton, L.A.; Reynolds, C.K.; Wray-Cahen, D.; Lomax, M.A.; France, J. An integrative model of amino acid metabolism in the liver of the lactating dairy cow. J. Theor. Biol. 2004, 228, 271–289. [Google Scholar] [CrossRef]
- Hanigan, M.D.; Reynolds, C.K.; Humphries, D.J.; Lupoli, B.; Sutton, J.D. A model of net amino acid absorption and utilization by the portal-drained viscera of the lactating dairy cow. J. Dairy Sci. 2004, 87, 4247–4268. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Doepel, L.; Pacheco, D.; Kennelly, J.J.; Hanigan, M.D.; López, I.F.; Lapierre, H. Milk protein synthesis as a function of amino acid supply. J. Dairy Sci. 2004, 87, 1279–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danes, M.A.C.; Hanigan, M.D.; Arriola Apelo, S.I.; Dias, J.D.L.; Wattiaux, M.A.; Broderick, G.A. Post-ruminal supplies of glucose and casein, but not acetate, stimulate milk protein synthesis in dairy cows through differential effects on mammary metabolism. J. Dairy Sci. 2020, 103, 6218–6232. [Google Scholar] [CrossRef] [PubMed]
- Pszczolkowski, V.L.; Zhang, J.; Pignato, K.A.; Meyer, E.J.; Kurth, M.M.; Lin, A.; Arriola Apelo, S.I. Insulin potentiates essential amino acids effects on mechanistic target of rapamycin complex 1 signaling in MAC-T cells. J. Dairy Sci. 2020, 103, 11988–12002. [Google Scholar] [CrossRef]
- Olmos Colmenero, J.J.; Broderick, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 17041712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.N.; Rulquin, H.; Andrade, A.; Faverdin, P.; Peyraud, J.L.; Lemosquet, S. Milk protein synthesis in response to the provision of an “ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. J. Dairy Sci. 2012, 95, 5876–5887. [Google Scholar] [CrossRef]
- Nahm, K.H. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Crit. Rev. Environ. Sci. Technol. 2002, 32, 1–16. [Google Scholar] [CrossRef]
- Haque, M.N.; Guinard-Flament, J.; Lamberton, P.; Mustière, C.; Lemosquet, S. Changes in mammary metabolism in response to the provision of an ideal amino acid profile at 2 levels of metabolizable protein supply in dairy cows: Consequences on efficiency. J. Dairy Sci. 2015, 98, 3951–3968. [Google Scholar] [CrossRef] [Green Version]
- Bequette, B.J.; Hanigan, M.D.; Calder, A.G.; Reynolds, C.K.; Lobley, G.E.; MacRae, J.C. Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production. J. Dairy Sci. 2000, 83, 765–775. [Google Scholar] [CrossRef]
- Cantalapiedra-Hijar, G.; Ortigues-Marty, I.; Lemosquet, S. Diets rich in starch improve the efficiency of amino acids use by the mammary gland in lactating Jersey cows. J. Dairy Sci. 2015, 98, 6939–6953. [Google Scholar] [CrossRef] [Green Version]
- Curtis, R.V.; Kim, J.J.M.; Doelman, J.; Cant, J.P. Maintenance of plasma branched-chain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows. J. Dairy Sci. 2018, 101, 4542–4553. [Google Scholar] [CrossRef] [PubMed]
- Nichols, K.; Bannink, A.; Doelman, J.; Dijkstra, J. Mammary gland metabolite utilization in response to exogenous glucose or long-chain fatty acids at low and high metabolizable protein levels. J. Dairy Sci. 2019, 102, 7150–7167. [Google Scholar] [CrossRef]
- Gressley, T.F.; Reynal, S.M.; Colmenero, J.O.; Broderick, G.A.; Armentano, L.E. Technical note: Development of a tool to insert abomasal infusion lines into dairy cows. J. Dairy Sci. 2006, 89, 3965–3967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- AOAC. Official Methods of Analysis, 13th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1980. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hintz, R.W.; Mertens, D.R.; Albrecht, K.A. Effects of sodium sulfite on recovery and composition of detergent fiber and lignin. J. AOAC Int. 1996, 79, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 16th ed.; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- European Commission. 2009/150/EC Commission regulation laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union L. 2009, 54, 1–130. [Google Scholar]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Krause, K.M.; Combs, D.K.; Beauchemin, K.A. Effects of increasing levels of refined cornstarch in the diet of lactating dairy cows on performance and ruminal pH. J. Dairy Sci. 2003, 86, 1341–1353. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Clayton, M.K. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef]
- Valadares, R.F.D.; Broderick, G.A.; Valadares Filho, S.C.; Clayton, M.K. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Vogels, G.D.; Van der Drift, C. Differential analyses of glyoxylate derivatives. Anal. Biochem. 1970, 33, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of the Technical Details; International Feed Resources Unit Rowett Research Institute: Aberdeen, UK, 1992. [Google Scholar]
- Vagnoni, D.B.; Broderick, G.A.; Clayton, M.K.; Hatfield, R.D. Excretion of purine derivatives by holstein cows abomasally infused with incremental amounts of purines. J. Dairy Sci. 1997, 80, 1695–1702. [Google Scholar] [CrossRef] [PubMed]
- Emery, R.S.; Brown, L.D.; Bell, J.W. Correlation of milk fat with dietary and metabolic factors in cows fed restricted roughage rations supplemented with magnesium oxide or sodium bicarbonate. J. Dairy Sci. 1965, 48, 1647–1651. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Calder, A.G.; Garden, K.E.; Anderson, S.E.; Lobley, G.E. Quantitation of blood and plasma amino acids using isotope dilution electron impact gas chromatography/mass spectrometry with U-13C amino acids as internal standards. Rapid Commun. Mass Spectrom. 1999, 13, 2080–2083. [Google Scholar] [CrossRef]
- Cant, J.P.; DePeters, E.J.; Baldwin, R.L. Mammary amino acid utilization in dairy cows fed fat and its relationship to milk protein depression. J. Dairy Sci. 1993, 76, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, H.; Lobley, G.E.; Doepel, L.; Raggio, G.; Rulquin, H.; Lemosquet, S. Triennial Lactation Symposium: Mammary metabolism of amino acids in dairy cows. J. Anim. Sci. 2012, 90, 1708–1721. [Google Scholar] [CrossRef]
- Hanigan, M.D.; France, J.; Wray-cahen, D.; Beever, D.E.; Lobley, G.E.; Reutzel, L.; Smith, E.N. Alternative models for analyses of liver and mammary transorgan metabolite extraction data. Br. J. Nutr. 1998, 79, 63–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Zhao, S.; Min, L.; Zheng, N.; Wang, J. Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows. Animals 2019, 9, 925. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Hristov, A.N.; Cassidy, T.W.; Heyler, K.S.; Lapierre, H.; Varga, G.A.; de Veth, M.J.; Patton, R.A.; Parys, C. Rumen protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J. Dairy Sci. 2012, 95, 6042–6056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, K.; Liu, W.; Lin, X.Y.; Hu, Z.Y.; Yan, Z.G.; Wang, Y.; Shi, K.R.; Liu, G.M.; Wang, Z.H. Effects of rumen-protected methionine and other essential amino acid supplementation on milk and milk component yields in lactating Holstein cows. J. Dairy Sci. 2019, 102, 7936–7947. [Google Scholar] [CrossRef]
- Giallongo, F.; Hristov, A.N.; Oh, J.; Frederick, T.; Weeks, H.; Werner, J.; Lapierre, H.; Patton, R.A.; Gehman, A.; Parys, C. Effects of slow-release urea and rumen-protected methionine and histidine on performance of dairy cows. J. Dairy Sci. 2015, 98, 3292–3308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Giallongo, F.; Hristov, A.N.; Lapierre, H.; Cassidy, T.W.; Heyler, K.S.; Varga, G.A.; Parys, C. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. J. Dairy Sci. 2015, 98, 1885–1902. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.K.; Kristensen, N.B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 2008, 86 (Suppl. S14), E293–E305. [Google Scholar] [CrossRef] [Green Version]
- Arriola Apelo, S.I.; Bell, A.L.; Estes, K.; Ropelewski, J.; de Veth, M.J.; Hanigan, M.D. Effects of reduced dietary protein and supplemental rumen-protected essential amino acids on the nitrogen efficiency of dairy cows. J. Dairy Sci. 2014, 97, 5688–5699. [Google Scholar] [CrossRef] [Green Version]
- Arriola Apelo, S.I.; Singer, L.M.; Lin, X.Y.; McGilliard, M.L.; St-Pierre, N.R.; Hanigan, M.D. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue. J. Dairy Sci. 2014, 97, 1047–1056. [Google Scholar] [CrossRef] [Green Version]
- Appuhamy, J.A.; Knoebel, N.A.; Nayananjalie, W.A.; Escobar, J.; Hanigan, M.D. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. J. Nutr. 2012, 142, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Saxton, R.A.; Knockenhauer, K.E.; Wolfson, R.L.; Chantranupong, L.; Pacold, M.E.; Wang, T.; Schwartz, T.U.; Sabatini, D.M. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 2016, 351, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, D.M. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. USA 2017, 114, 11818–11825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemosquet, S.; Raggio, G.; Lapierre, H.; Guinard-Flament, J.; Rulquin, H. Effects of protein supply on whole body glucose rate of appearance and mammary gland metabolism of energy nutrients in ruminants. In ISEP—2nd International Symposium on Energy and Protein Metabolism and Nutrition; Wageningen Academic Publishers: Vichy, France, 2007; pp. 581–582. [Google Scholar]
- Greenberg, D.M. Biological Methylation. Adv. Enzymol. Rel. Subj. Bioch. 1963, 25, 395–431. [Google Scholar]
- Wang, C.; Liu, H.Y.; Wang, Y.M.; Yang, Z.Q.; Liu, J.X.; Wu, Y.M.; Yan, T.; Ye, H.W. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J. Dairy Sci. 2010, 93, 3661–3670. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Ji, P.; Drackley, J.K.; Luchini, D.; Loor, J.J. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2013, 96, 6248–6263. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hosseini, A.; Danes, M.; Jacometo, C.; Liu, J.; Loor, J.J. Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells. J. Anim. Sci. Biotechnol. 2016, 7, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Aguerre, M.J.; Wattiaux, M.A.; Hunt, T.; Larget, B.R. Effect of dietary crude protein on ammonia-N emission measured by herd nitrogen mass balance in a freestall dairy barn managed under farm-like conditions. Animal 2010, 4, 1390–1400. [Google Scholar] [CrossRef] [Green Version]
- Rulquin, H.; Raggio, G.; Lapierre, H.; Lemosquet, S. Relationship between intestinal supply of essential amino acids and their mammary metabolism in the lactating dairy cow. In Energy and Protein Metabolism and Nutrition; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 587–588. [Google Scholar]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; France, J. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J. Anim. Feed Sci. 2001, 9, 1–32. [Google Scholar] [CrossRef]
- Benevenga, N.J. Toxicities of Methionine and Other Amino Acids. J. Agr. Food Chem. 1974, 22, 2–9. [Google Scholar] [CrossRef]
- Broderick, G.A.; Satter, L.D.; Harper, A.E. Use of plasma amino acid concentration to identify limiting amino acids for milk production. J. Dairy Sci. 1974, 57, 1015–1023. [Google Scholar] [CrossRef]
- Raggio, G.; Lemosquet, S.; Lobley, G.E.; Rulquin, H.; Lapierre, H. Effect of casein and propionate supply on mammary protein metabolism in lactating dairy cows. J. Dairy Sci. 2006, 89, 4340–4351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letelier, P.; Zanton, G.I.; Dorea, J.R.R.; Wattiaux, M.A. Plasma essential amino acid concentration and profile are associated with performance of lactating dairy cows as revealed through meta-analysis and hierarchical clustering. J. Dairy Sci. 2022, 105, 5044–5061. [Google Scholar] [CrossRef] [PubMed]
- Patton, R.A.; Hristov, A.N.; Parys, C.; Lapierre, H. Relationships between circulating plasma concentrations and duodenal flows of essential amino acids in lactating dairy cows. J. Dairy Sci. 2015, 98, 4707–4734. [Google Scholar] [CrossRef] [Green Version]
- Hanigan, M.D.; France, J.; Crompton, L.A.; Bequette, B.J. Evaluation of a representation of the limiting amino acid theory for milk protein synthesis. In Modelling Nutrient Utilization in Farm Animals; CAB International: Wallingford, UK, 2000; pp. 127–144. [Google Scholar]
- Doepel, L.; Lapierre, H. Changes in production and mammary metabolism of dairy cows in response to essential and nonessential amino acid infusions. J. Dairy Sci. 2010, 93, 3264–3274. [Google Scholar] [CrossRef] [Green Version]
Alfalfa Silage | Corn Silage | HMSC | SBM | CM | Soy Hulls | |
---|---|---|---|---|---|---|
DM 2, % | 38.2 | 37.5 | 82.2 | 91.8 | 91.5 | 91.4 |
CP, % DM | 20.7 | 7.6 | 8.0 | 51.6 | 39.3 | 10.9 |
NDF, % DM | 39.8 | 43.0 | 4.7 | 8.8 | 28.0 | 67.4 |
ADF, % DM | 31.1 | 25.3 | 1.3 | 5.2 | 19.6 | 47.3 |
NDICP, % DM | 2.0 | 1.1 | 0.3 | 3.2 | 5.2 | 4.0 |
ADICP, % DM | 0.9 | 0.3 | 0.1 | 0.1 | 2.1 | 0.9 |
Ash, % DM | 6.1 | 4.0 | 1.4 | 6.5 | 8.2 | 4.1 |
Amino acids, % CP | ||||||
Alanine | 8.00 | 8.74 | 8.17 | na 3 | na | 4.21 |
Arginine | 2.00 | 1.72 | 2.72 | 7.25 | 5.84 | 4.48 |
Aspartate | 4.99 | 7.72 | 6.25 | na | na | 8.86 |
Cysteine | 1.01 | 0.65 | 1.87 | 1.53 | 2.42 | 1.74 |
Glutamate | 10.42 | 6.53 | 16.41 | na | na | 10.08 |
Glycine | 3.79 | 4.22 | 3.73 | na | na | 8.40 |
Histidine | 1.54 | 1.29 | 2.05 | 2.67 | 2.83 | 2.48 |
Isoleucine | 3.35 | 4.40 | 3.36 | 4.44 | 3.76 | 3.54 |
Leucine | 8.15 | 6.96 | 11.43 | 7.50 | 6.72 | 6.19 |
Lysine | 2.28 | 3.78 | 2.62 | 6.26 | 5.40 | 6.56 |
Methionine | 1.49 | 1.36 | 2.08 | 1.39 | 1.91 | 1.08 |
Phenylalanine | 3.40 | 4.26 | 4.33 | 5.00 | 3.90 | 3.77 |
Proline | 6.18 | 5.12 | 8.46 | na | na | 5.07 |
Serine | 2.84 | 3.17 | 4.21 | na | na | 5.74 |
Threonine | 3.24 | 2.96 | 3.35 | 3.98 | 4.26 | 3.54 |
Tryptophan | na | na | na | 1.38 | 1.35 | na |
Valine | 4.56 | 5.41 | 4.54 | 4.76 | 4.87 | 4.37 |
Dietary CP | 16.5 | 15.0 | 13.5 |
---|---|---|---|
Ingredients, % DM | |||
Alfalfa Silage | 30.0 | 30.0 | 30.0 |
Corn Silage | 30.0 | 30.0 | 30.0 |
High moisture corn | 22.9 | 23.7 | 24.8 |
Solvent soybean meal | 5.4 | 3.6 | 1.7 |
Canola meal solvent | 6.9 | 4.5 | 2.2 |
Soybean hulls | 2.4 | 5.8 | 8.9 |
Calcium sulfate | 1.36 | 1.36 | 1.36 |
Monocalcium phosphate | 0.22 | 0.22 | 0.22 |
Sodium chloride | 0.18 | 0.18 | 0.18 |
Magnesium oxide/sulfate | 0.50 | 0.50 | 0.50 |
Vitamin-mineral premix 1 | 0.14 | 0.14 | 0.14 |
Nutrient composition, % DM | |||
CP, % DM | 16.1 | 14.6 | 13.2 |
NDF % DM | 30.0 | 31.5 | 32.8 |
ADF, % DM | 20.0 | 21.0 | 21.9 |
Ash, % DM | 4.3 | 4.2 | 4.0 |
NFC 2, % DM | 48.5 | 48.6 | 48.9 |
Starch 3, % DM | 26.7 | 27.3 | 28.1 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion | − | + | − | + | − | p-Value | |
CP, % DM | 16.1 a | 14.8 b | 14.7 c | 13.6 d | 13.2 e | 0.03 | <0.01 |
RDP, % DM | 11.7 a | 10.6 b | 10.6 b | 9.6 c | 9.6 c | 0.02 | <0.01 |
RUP, % DM | 4.5 a | 4.2 b | 4.0 c | 4.0 c | 3.6 d | 0.02 | <0.01 |
MP supply, g/d | 2065 a | 1918 ab | 1917 ab | 1882 ab | 1741 b | 69 | <0.01 |
MP balance, g/d | −51 a | −190 b | −154 ab | −337 c | −337 c | 47 | <0.01 |
NEL supply, Mcal/d | 41.8 | 41.4 | 42.1 | 43.5 | 41.9 | 2.0 | 0.78 |
Nel balance, Mcal/d | 3.9 | 4.3 | 4.7 | 3.9 | 4.9 | 1.3 | 0.89 |
Dig. EAA flow, g/d | |||||||
Arginine | 104 a | 92 b | 94 b | 84 bc | 82 c | 3.9 | <0.01 |
Histidine | 46 b | 47 b | 41 c | 54 a | 37 c | 1.8 | <0.01 |
Isoleucine | 124 a | 113 ab | 115 ab | 107 b | 105 b | 4.7 | <0.01 |
Leucine | 185 a | 170 ab | 173 ab | 162 b | 158 b | 7.3 | <0.01 |
Lysine | 156 b | 156 b | 144 bc | 174 a | 131 c | 5.8 | <0.01 |
Methionine | 47 b | 51 a | 43 bc | 53 a | 40 c | 1.8 | <0.01 |
Phenylalanine | 116 a | 106 ab | 107 ab | 100 b | 98 b | 4.3 | <0.01 |
Threonine | 109 a | 100 ab | 101 ab | 94 b | 92 b | 4.2 | <0.01 |
Tryptophan | 26 a | 24 abc | 24 ab | 22 bc | 21 c | 1.0 | <0.01 |
Valine | 130 a | 119 ab | 120 ab | 121 ab | 110 b | 5.0 | <0.01 |
EAA | 1043 a | 979 a | 964 ab | 972 a | 874 b | 39.7 | <0.01 |
Other AA | 1817 a | 1668 ab | 1686 ab | 1614 b | 1532 b | 72.1 | <0.01 |
AA efficiency | |||||||
Arginine | 0.55 e | 0.63 c | 0.61 d | 0.73 a | 0.69 b | 0.003 | <0.01 |
Histidine | 0.91 c | 0.87 d | 0.99 b | 0.80 e | 1.09 a | 0.010 | <0.01 |
Isoleucine | 0.65 e | 0.71 c | 0.69 d | 0.79 a | 0.74 b | 0.004 | <0.01 |
Leucine | 0.75 e | 0.81 c | 0.79 d | 0.90 a | 0.84 b | 0.004 | <0.01 |
Lysine | 0.74 c | 0.73 c | 0.80 b | 0.70 d | 0.86 a | 0.007 | <0.01 |
Methionine | 0.80 c | 0.73 d | 0.85 b | 0.73 d | 0.90 a | 0.009 | <0.01 |
Phenylalanine | 0.61 e | 0.67 c | 0.65 d | 0.75 a | 0.70 b | 0.004 | <0.01 |
Threonine | 0.64 e | 0.70 c | 0.68 d | 0.78 a | 0.74 b | 0.003 | <0.01 |
Tryptophan | 0.86 e | 0.95 c | 0.93 d | 1.08 a | 1.01 b | 0.005 | <0.01 |
Valine | 0.72 d | 0.78 b | 0.76 c | 0.81 a | 0.82 a | 0.004 | <0.01 |
EAA | 0.70 d | 0.74 c | 0.75 c | 0.79 b | 0.80 a | 0.004 | <0.01 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion | − | + | − | + | − | p-Value | |
DMI, kg/d | 23.2 | 23.1 | 23.7 | 24.1 | 23.3 | 1.2 | 0.83 |
Milk yield, kg/d | 35.6 | 34.3 | 35.7 | 36.7 | 34.6 | 1.5 | 0.31 |
ECM, kg/d | 31.9 ab | 30.7 b | 32.4 ab | 34.5 a | 31.4 b | 1.7 | 0.09 |
Fat, % | 3.50 b | 3.46 b | 3.56 b | 3.79 a | 3.57 ab | 0.15 | 0.05 |
Fat yield, kg/d | 1.236 b | 1.173 b | 1.269 ab | 1.383 a | 1.222 b | 0.087 | 0.05 |
Protein, % | 2.91 | 2.96 | 2.89 | 2.99 | 2.93 | 0.07 | 0.27 |
Protein yield, kg/d | 1.026 | 1.009 | 1.022 | 1.082 | 0.998 | 0.052 | 0.25 |
Lactose, % | 4.72 | 4.76 | 4.80 | 4.77 | 4.83 | 0.08 | 0.21 |
Lactose yield, kg/d | 1.689 | 1.628 | 1.707 | 1.746 | 1.669 | 0.079 | 0.45 |
MUN, mg/dL | 12.5 a | 10.2 c | 11.4 b | 9.0 d | 8.9 d | 0.7 | <0.01 |
PUN, mg/dL | 12.4 a | 12.1 a | 11.2 a | 8.1 b | 8.7 b | 0.8 | <0.01 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion | − | + | − | + | − | p-Value | |
DM digestibility, % | 70.8 b | 72.6 ab | 71.9 ab | 74.0 a | 73.7 a | 0.9 | 0.06 |
OM digestibility, % | 72.8 | 74.5 | 73.5 | 75.5 | 75.3 | 0.9 | 0.11 |
CP digestibility, % | 66.8 | 66.5 | 65.9 | 66.5 | 64.2 | 1.6 | 0.75 |
NDF digestibility, % | 51.2 c | 55.8 ab | 53.1 bc | 57.9 a | 58.4 a | 1.5 | <0.01 |
dDM intake, kg/d | 16.4 | 16.8 | 17.1 | 17.8 | 17.1 | 0.9 | 0.41 |
dOM intake, kg/d | 15.7 | 16.1 | 16.3 | 17.1 | 16.4 | 0.9 | 0.43 |
dCP intake, kg/d | 2.5 a | 2.2 ab | 2.3 ab | 2.1 bc | 2.0 c | 0.1 | <0.01 |
dNDF intake, kg/d | 3.5 d | 4.1 bc | 4.0 c | 4.6 a | 4.5 ab | 0.2 | <0.01 |
Microbial yield, g/d | 1321 | 1342 | 1349 | 1374 | 1329 | 59 | 0.87 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion | − | + | − | + | − | p-Value | |
N intake 1 (NI), g/d | 595 a | 551 ab | 555 ab | 537 b | 491 c | 27 | <0.01 |
Milk N, g/d | 161 | 158 | 160 | 170 | 157 | 8 | 0.26 |
Milk N/NI, % | 26.7 c | 28.7 b | 28.7 b | 31.6 a | 31.7 a | 1.1 | <0.01 |
Urine N (UN), % | 0.75 a | 0.60 bc | 0.61 b | 0.53 c | 0.57 bc | 0.03 | <0.01 |
UN, g/d | 115 a | 98 bc | 108 c | 85 d | 89 cd | 5 | <0.01 |
UN/NI, % | 19.6 a | 17.8 ab | 19.4 a | 15.9 b | 18.2 b | 0.9 | 0.01 |
Urine urea N/UN, % | 94.1 a | 79.5 b | 84.2 b | 72.3 c | 72.6 c | 2.2 | <0.01 |
Fecal N, % | 2.9 | 2.9 | 2.8 | 2.7 | 2.9 | 0.1 | 0.22 |
Fecal N, g/d | 196 | 184 | 190 | 170 | 178 | 11 | 0.34 |
Fecal N/NI, % | 33.3 | 32.9 | 34.1 | 31.5 | 35.6 | 1.6 | 0.41 |
Unaccounted N 2, % | 20.5 | 20.3 | 17.9 | 19.9 | 14.6 | 2.3 | 0.16 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion | − | + | − | + | − | p-Value | |
Alanine | 281.8 | 255.5 | 261.0 | 290.8 | 279.8 | 14.8 | 0.29 |
Asparagine | 16.1 | 15.1 | 15.9 | 15.3 | 14.8 | 1.9 | 0.98 |
Aspartate | 24.9 | 19.9 | 21.8 | 22.1 | 23.0 | 3.0 | 0.61 |
Cysteine | 142.3 ab | 145.8 ab | 131.4 b | 161.2 a | 130.2 b | 9.4 | 0.05 |
Glutamate | 156.9 | 139.6 | 138.0 | 140.8 | 148.2 | 11.1 | 0.30 |
Glutamine | 114.2 | 115.7 | 116.5 | 123.1 | 120.9 | 10.9 | 0.93 |
Glycine | 318.1 b | 288.6 b | 312.1 b | 318.3 b | 373.7 a | 25.1 | 0.02 |
Histidine | 50.3 b | 52.1 ab | 36.2 bc | 66.6 a | 31.6 c | 6.6 | <0.01 |
Isoleucine | 115.6 a | 101.8 b | 108.4 a | 100.0 b | 101.1 b | 7.0 | 0.10 |
Leucine | 120.4 | 104.8 | 109.6 | 113.4 | 107.6 | 6.4 | 0.17 |
Lysine | 117.0 ab | 101.7 b | 109.4 b | 129.8 a | 101.5 b | 7.4 | 0.01 |
Methionine | 25.3 c | 36.9 b | 23.0 c | 51.1 a | 24.4 c | 2.9 | <0.01 |
Phenylalanine | 44.7 | 40.4 | 43.6 | 40.0 | 45.3 | 3.2 | 0.47 |
Proline | 82.1 | 74.1 | 77.4 | 79.1 | 79.7 | 4.6 | 0.66 |
Serine | 98.9 ab | 81.5 c | 96.7 b | 92.5 bc | 111.8 a | 5.7 | <0.01 |
Threonine | 90.6 | 79.5 | 94.6 | 84.1 | 97.0 | 7.9 | 0.21 |
Tryptophan | 46.6 | 41.7 | 44.6 | 40.2 | 44.3 | 3.5 | 0.33 |
Tyrosine | 46.9 a | 39.6 b | 47.1 a | 38.3 b | 46.5 a | 3.2 | <0.01 |
Valine | 192.9 a | 158.4 b | 176.0 ab | 156.4 b | 166.6 b | 11.7 | <0.01 |
Total AA-N 1 | 2472 | 2347 | 2286 | 2499 | 2396 | 111 | 0.41 |
EAA-N 1 | 1060 ab | 1002 abc | 954 bc | 1083 a | 934 c | 53 | 0.02 |
NEAA-N 1 | 1413 | 1299 | 1336 | 1424 | 1466 | 69 | 0.32 |
Group 1 AA-N 2 | 444 ab | 445 ab | 395 b | 493 a | 400 b | 29 | 0.02 |
Group 2 AA-N 2 | 663 a | 570 b | 617 ab | 630 ab | 580 b | 33 | 0.05 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion | − | + | − | + | − | p-Value | |
Plasma flow | 802 | 867 | 839 | 819 | 831 | 107 | 0.99 |
Alanine | 26.6 | 27.2 | 28.7 | 32.0 | 26.3 | 4.3 | 0.66 |
Asparagine | 3.30 | 2.92 | 2.94 | 3.60 | 3.15 | 0.68 | 0.90 |
Aspartate | 4.50 | 4.49 | 3.47 | 3.96 | 4.42 | 0.73 | 0.61 |
Cysteine | 3.00 | 4.71 | 6.58 | 4.60 | 3.84 | 2.10 | 0.69 |
Glutamate | 40.7 | 40.4 | 37.0 | 35.6 | 39.3 | 3.9 | 0.73 |
Glutamine | 16.7 b | 23.4 ab | 23.8 ab | 27.2 a | 19.2 ab | 3.3 | 0.08 |
Glycine | 1.80 | 2.37 | 5.59 | 3.53 | −4.54 | 5.89 | 0.69 |
Histidine | 11.8 | 6.9 | 7.4 | 10.8 | 8.8 | 3.2 | 0.45 |
Isoleucine | 24.1 | 24.1 | 24.2 | 23.4 | 24.0 | 2.1 | 1.00 |
Leucine | 36.2 | 35.6 | 35.9 | 36.2 | 35.1 | 2.6 | 0.99 |
Lysine | 38.4 | 30.2 | 31.6 | 41.4 | 30.3 | 5.8 | 0.24 |
Methionine | 9.20 | 9.44 | 8.44 | 8.90 | 7.93 | 0.74 | 0.42 |
Phenylalanine | 14.6 | 14.0 | 14.6 | 14.7 | 13.9 | 1.0 | 0.90 |
Proline | 8.10 | 6.96 | 7.68 | 7.85 | 7.14 | 1.11 | 0.86 |
Serine | 16.8 | 18.0 | 15.7 | 17.9 | 13.7 | 2.0 | 0.40 |
Threonine | 18.2 | 17.2 | 16.4 | 16.5 | 14.5 | 1.8 | 0.34 |
Tryptophan | 4.90 | 3.61 | 4.42 | 3.67 | 3.41 | 1.83 | 0.94 |
Tyrosine | 12.0 | 12.5 | 11.9 | 12.9 | 12.0 | 0.9 | 0.62 |
Valine | 27.7 | 27.4 | 28.5 | 27.4 | 27.3 | 2.8 | 0.99 |
Total AA-N 1 | 402 | 405 | 383 | 421 | 361 | 40 | 0.36 |
EAA-N 1 | 252 | 228 | 223 | 248 | 219 | 29 | 0.55 |
NEAA-N 1 | 150 | 175 | 170 | 177 | 146 | 20 | 0.33 |
Group 1 AA-N 2 | 95 | 82 | 84 | 92 | 83 | 13 | 0.75 |
Group 2 AA-N 2 | 165 | 152 | 151 | 166 | 147 | 15 | 0.57 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion 1 | − | + | − | + | − | p-Value | |
Alanine | 230 | 118 | 121 | 106 | 97 | 102 | 0.74 |
Asparagine | 303 | 230 | 270 | 392 | 272 | 82 | 0.56 |
Aspartate | 262 | 285 | 287 | 257 | 275 | 52 | 0.98 |
Cysteine | 22 | 32 | 57 | 31 | 31 | 16 | 0.46 |
Glutamate | 400 | 447 | 429 | 433 | 431 | 57 | 0.95 |
Glutamine | 247 | 271 | 282 | 294 | 202 | 40 | 0.18 |
Histidine | 443 ab | 166 b | 343 ab | 287 ab | 518 a | 129 | 0.10 |
Isoleucine | 300 | 331 | 325 | 368 | 327 | 40 | 0.44 |
Leucine | 518 | 642 | 560 | 622 | 602 | 72 | 0.30 |
Lysine | 606 | 418 | 579 | 608 | 555 | 116 | 0.69 |
Methionine | 675 a | 368 b | 674 a | 232 b | 591 a | 67 | <0.01 |
Phenylalanine | 608 bc | 700 ab | 580 bc | 755 a | 543 c | 74 | 0.06 |
Proline | 116 | 106 | 121 | 116 | 107 | 19 | 0.93 |
Serine | 224 bc | 288 ab | 224 bc | 327 a | 172 c | 32 | <0.01 |
Threonine | 279 a | 294 a | 234 a | 284 a | 201 b | 32 | 0.03 |
Tryptophan | 90 | 128 | 109 | 108 | 96 | 43 | 0.97 |
Tyrosine | 409 b | 539 b | 424 b | 687 a | 414 b | 67 | <0.01 |
Valine | 181 | 223 | 209 | 246 | 214 | 29 | 0.18 |
Total AA-N 2 | 212 | 216 | 220 | 217 | 184 | 24 | 0.20 |
EAA-N 2 | 356 | 316 | 349 | 351 | 342 | 49 | 0.94 |
NEAA-N 2 | 127 | 156 | 158 | 149 | 117 | 20 | 0.13 |
Group 1 AA-N 3 | 288 | 233 | 290 | 267 | 287 | 43 | 0.73 |
Group 2 AA-N 3 | 376 | 394 | 386 | 427 | 362 | 44 | 0.50 |
Dietary CP | 16.1 | 14.6 | 14.6 | 13.2 | 13.2 | SEM | Trt |
---|---|---|---|---|---|---|---|
AA Infusion | − | + | − | + | − | p-Value | |
Milk protein yield 1,2 | 497.0 | 499.4 | 500.3 | 520.1 | 488.3 | 0.03 | 0.85 |
Alanine | 1.55 * | 1.72 * | 1.78 * | 1.94 * | 1.69 * | 0.26 | 0.72 |
Asparagine | 0.24 * | 0.19 * | 0.23 * | 0.27 * | 0.23 * | 0.05 | 0.84 |
Aspartate | 0.33 * | 0.36 * | 0.30 * | 0.34 * | 0.40 * | 0.05 | 0.51 |
Cysteine | 0.93 | 1.71 | 2.69 * | 1.77 | 1.46 | 0.81 | 0.49 |
Glutamate | 1.12 | 1.15 | 1.03 | 0.96 | 1.12 | 0.09 | 0.41 |
Glutamine | 0.65 * | 0.83 | 0.80 * | 0.92 | 0.66 * | 0.11 | 0.23 |
Histidine | 1.43 * | 0.76 | 1.02 | 1.00 | 1.23 | 0.33 | 0.34 |
Isoleucine | 1.22 * | 1.17 * | 1.23 * | 1.25 * | 1.25 * | 0.05 | 0.53 |
Leucine | 1.12 * | 1.08 * | 1.09 * | 1.12 * | 1.10 * | 0.02 | 0.40 |
Lysine | 1.57 * | 1.14 | 1.32 * | 1.60 * | 1.27 † | 0.20 | 0.21 |
Methionine | 1.09 *a | 1.03ab | 0.98b | 1.02 ab | 0.96 b | 0.04 | 0.07 |
Phenylalanine | 1.12 * | 1.07 * | 1.09 * | 1.09 * | 1.09 * | 0.02 | 0.34 |
Proline | 0.22 * | 0.18 * | 0.21 * | 0.20 * | 0.19 * | 0.02 | 0.62 |
Serine | 0.65 *abc | 0.68 *ab | 0.60 *bc | 0.74 *a | 0.56 *c | 0.46 | 0.03 |
Threonine | 1.10 | 1.06 | 1.03 | 1.09 | 0.92 | 0.07 | 0.20 |
Tryptophan | 1.46 | 1.28 | 1.38 | 1.18 | 1.24 | 0.52 | 0.99 |
Tyrosine | 0.89 * | 0.94 * | 0.89 * | 0.92 * | 0.91 * | 0.02 | 0.35 |
Valine | 1.11 † | 1.09 | 1.15 * | 1.20 * | 1.14 * | 0.07 | 0.72 |
Total AA-N 3 | 0.92 † | 0.92 † | 0.91 † | 0.98 | 0.84 * | 0.06 | 0.12 |
EAA-N 3 | 1.29 * | 1.11 | 1.18 * | 1.30 * | 1.14 † | 0.12 | 0.40 |
NEAA-N 3 | 0.68 * | 0.73 * | 0.73 * | 0.74 * | 0.63 * | 0.06 | 0.39 |
Group 1 AA-N 4 | 1.05 | 0.77 | 0.87 | 1.04 | 0.90 | 0.17 | 0.51 |
Group 2 AA-N 4 | 1.31 * | 1.16 † | 1.23 * | 1.27 * | 1.20 * | 0.09 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danes, M.A.C.; Paula, E.M.; Parys, C.; Souza, G.M.; Rezende, J.P.A.; Broderick, G.A.; Wattiaux, M.A. Effects of Amount and Profile of Amino Acids Supply on Lactation Performance, Mammary Gland Metabolism, and Nitrogen Efficiency in Holstein Dairy Cows. Animals 2023, 13, 1866. https://doi.org/10.3390/ani13111866
Danes MAC, Paula EM, Parys C, Souza GM, Rezende JPA, Broderick GA, Wattiaux MA. Effects of Amount and Profile of Amino Acids Supply on Lactation Performance, Mammary Gland Metabolism, and Nitrogen Efficiency in Holstein Dairy Cows. Animals. 2023; 13(11):1866. https://doi.org/10.3390/ani13111866
Chicago/Turabian StyleDanes, Marina A. C., Eduardo M. Paula, Claudia Parys, Gleiciele M. Souza, João Pedro A. Rezende, Glen A. Broderick, and Michel A. Wattiaux. 2023. "Effects of Amount and Profile of Amino Acids Supply on Lactation Performance, Mammary Gland Metabolism, and Nitrogen Efficiency in Holstein Dairy Cows" Animals 13, no. 11: 1866. https://doi.org/10.3390/ani13111866
APA StyleDanes, M. A. C., Paula, E. M., Parys, C., Souza, G. M., Rezende, J. P. A., Broderick, G. A., & Wattiaux, M. A. (2023). Effects of Amount and Profile of Amino Acids Supply on Lactation Performance, Mammary Gland Metabolism, and Nitrogen Efficiency in Holstein Dairy Cows. Animals, 13(11), 1866. https://doi.org/10.3390/ani13111866