Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis
Abstract
:1. Introduction
2. Various Strategies of CQDs Synthesis
2.1. Top-Down Approach
2.2. Bottom-Up Approach
2.2.1. Microwave-Assisted Method
2.2.2. Ultrasound-Assisted Method
2.2.3. Hydrothermal Method
3. Sensing Applications of Functionalized CQDs in Food Analysis
3.1. Functional Components in Foods
3.2. Poisonous and Harmful Substances in Foods
3.2.1. Pesticide and Veterinary Drug Residues
3.2.2. Heavy Metal Ions
3.2.3. Mycotoxins
3.2.4. Food Additives
4. Conclusions and Outlook
- Although the types of CQDs tend to be diversified at present, compared with semiconductor QDs, the fluorescent QY of each CQDs is still low and the explanation of its luminescent or fluorescent mechanism still needs in-depth study.
- The complexity of the food matrix limits the specificity and sensitivity of the CQDs-based detection strategies to a certain extent; most of the established methods are aimed at a single target and there are few studies on the simultaneous detection of multiple targets in one sample.
- The study on the large-scale preparation and surface functionalization of CQDs and the constant exploration on the combination of CQDs with immunoassays, instrumental analysis, electrochemical sensing and other technologies are another direction of the research on CQDs. This is conducive to expand the application of related analysis strategies in foods.
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.H.; Luo, J.H.; Yin, G.H.; Xu, Z.; Le, Y.; Wu, X.F.; Wu, N.C.; Zhang, Q. Selective determination of dimethoate via fluorescence resonance energy transfer between carbon dots and a dye-doped molecularly imprinted polymer. Sens. Actuators B-Chem. 2015, 206, 14–21. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z.Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Gayen, B.; Palchoudhury, S.; Chowdhury, J. Carbon dots: A mystic star in the world of nanoscience. J. Nanomater. 2019, 2019, 3451307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liu, Y.; Li, Y.Q.; He, Z.Y.; Xu, Q.; Chen, Y.S.; Street, J.; Guo, H.; Nelles, M. Multicolor carbon nanodots from food waste and their heavy metal ion detection application. RSC Adv. 2018, 8, 23657–23662. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.B.; Wei, W.; Fu, Z.D.; Gao, W.L.; Zhang, C.Y.; Zhao, Q.; Dene, F.M.; Lu, X.Y. Review on carbon dots in food safety applications. Talanta 2019, 194, 809–821. [Google Scholar] [CrossRef]
- Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Liu, J.J.; Chen, Y.L.; Wang, W.F.; Feng, J.; Liang, M.J.; Ma, S.D.; Chen, X.G. “Switch-on” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 Probe. J. Agric. Food Chem. 2016, 64, 371–380. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Xiao, Y.; Tang, J.; Liang, C.; Li, F. A simple approach for synthesizing of fluorescent carbon quantum dots from Tofu wastewater. Nanoscale Res. Lett. 2017, 12, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Himaja, A.L.; Karthik, P.S.; Singh, S.P. Carbon dots: The newest member of the carbon nanomaterials family. Chem. Rec. 2015, 15, 595–615. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, H.U.; Park, E.S.; Lee, S.C.; Lee, J.W.; Jeong, S.W.; Kim, C.H.; Lee, Y.C.; Huh, Y.S.; Lee, J. Photoluminescent green carbon nanodots from food-waste-derived sources: Largescale synthesis, properties, and biomedical applications. ACS Appl. Mater. Interfaces 2014, 6, 3365–3370. [Google Scholar] [CrossRef]
- Lin, L.P.; Luo, Y.X.; Tsai, P.Y.; Wang, J.J.; Chen, X. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications. TrAC-Trends Anal. Chem. 2018, 103, 87–101. [Google Scholar] [CrossRef]
- Carneiro, S.V.; de Queiroz, V.H.R.; Cruz, A.A.C.; Fechine, L.M.U.D.; Denardin, J.C.; Freire, R.M.; do Nascimento, R.F.; Fechine, P.B.A. Sensing strategy based on carbon quantum dots obtained from riboflavin for the identification of pesticides. Sens. Actuators B-Chem. 2019, 301, 127149. [Google Scholar] [CrossRef]
- Hu, G.Q.; Sun, Y.Q.; Wu, S.S.; Li, W.; Hu, C.F.; Zhuang, J.L.; Zhang, X.J.; Lei, B.F.; Liu, Y.L. Assembly of shell/core CDs@CaF2 nanocomposites to endow polymer with multifunctional properties. Nanotechnology 2019, 30. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.B.; Zhu, S.J.; Yang, B. Bioimaging based on fluorescent carbon dots. RSC Adv. 2014, 4, 27184–27200. [Google Scholar] [CrossRef]
- Cao, N.; Zhao, F.Q.; Zeng, B.Z. A novel self-enhanced electrochemiluminescence sensor based on PEI-CdS/Au@SiO2@RuDS and molecularly imprinted polymer for the highly sensitive detection of creatinine. Sens. Actuators B-Chem. 2020, 306, 127591. [Google Scholar] [CrossRef]
- Landry, M.L.; Morrell, T.E.; Karagounis, T.K.; Hsia, C.H.; Wang, C.Y. Simple syntheses of CdSe quantum dots. J. Chem. Educ. 2014, 91, 274–279. [Google Scholar] [CrossRef]
- Svechkarev, D.; Mohs, A.M. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications. Curr. Med. Chem. 2019, 26, 4042–4064. [Google Scholar] [CrossRef]
- Silva, J.C.G.E.D.; Goncalves, H.M.R. Analytical and bioanalytical applications of carbon dots. TrAC-Trends Anal. Chem. 2011, 30, 1327–1336. [Google Scholar] [CrossRef]
- Ding, C.Q.; Zhu, A.W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts Chem. Res. 2014, 47, 20–30. [Google Scholar] [CrossRef]
- Zuo, P.L.; Lu, X.H.; Sun, Z.G.; Guo, Y.H.; He, H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim. Acta 2016, 183, 519–542. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, H.; Tang, J.B.; Deng, S.E.; Yan, F.; Li, W.J.; Qu, M.H. Carbon dots doped with heteroatoms for fluorescent bioimaging: A review. Microchim. Acta 2017, 184, 343–368. [Google Scholar] [CrossRef]
- Kucharska, M.; Grabka, J. A review of chromatographic methods for determination of synthetic food dyes. Talanta 2010, 80, 1045–1051. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, W.; Li, M.; Shen, Q.; Saleh, A.S.M. Application of chromatographic techniques in the detection and identification of constituents formed during food frying: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 601–633. [Google Scholar] [CrossRef] [Green Version]
- Płonka, M.; Walorczyk, S.; Miszczyk, M. Chromatographic methods for the determination of active substances and characterization of their impurities in pesticide formulations. TrAC-Trends Anal. Chem. 2016, 85, 67–80. [Google Scholar] [CrossRef]
- Cao, L.; Wang, X.; Meziani, M.J.; Lu, F.S.; Wang, H.F.; Luo, P.J.G.; Lin, Y.; Harruff, B.A.; Veca, L.M.; Murray, D. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Feng, Y.Q.; Dong, P.P.; Huang, J.F. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wang, T.; Wang, W.J.; Zhou, Z.P.; Yan, Y.S. A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. J. Ind. Eng. Chem. 2019, 72, 100–106. [Google Scholar] [CrossRef]
- Hu, X.T.; Shi, J.Y.; Shi, Y.Q.; Zou, X.B.; Tahir, H.E.; Holmes, M.; Zhang, W.; Huang, X.W.; Li, Z.H.; Xu, Y.W. A dual-mode sensor for colorimetric and fluorescent detection of nitrite in hams based on carbon dots-neutral red system. Meat Sci. 2019, 147, 127–134. [Google Scholar] [CrossRef]
- Wang, Y.F.; Hu, A.G. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.L.; Zhu, S.J.; Feng, T.L.; Yang, M.X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef]
- Mosconi, D.; Mazzier, D.; Silvestrini, S.; Privitera, A.; Marega, C.; Franco, L.; Moretto, A. Synthesis and photochemical applications of processable polymers enclosing photoluminescent carbon quantum dots. ACS Nano 2015, 9, 4156–4164. [Google Scholar] [CrossRef]
- Huang, C.C.; Hung, Y.S.; Weng, Y.M.; Chen, W.L.; Lai, Y.S. Sustainable development of carbon nanodots technology: Natural products as a carbon source and applications to food safety. Trends Food Sci. Technol. 2019, 86, 144–152. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ray, R.; Gu, Y.L.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Bottini, M.; Tautz, L.; Huynh, H.; Monosov, E.; Bottini, N.; Dawson, M.I.; Bellucci, S.; Mustelin, T. Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chem. Commun. 2005, 6, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.Q.; Yang, K.; Ma, Z.; Wan, J.M.; Zhang, Y.J.; Kang, Z.H.; Liu, Z. In vivo nir fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012, 8, 281–290. [Google Scholar] [CrossRef]
- Xie, R.B.; Wang, Z.F.; Zhou, W.; Liu, Y.T.; Fan, L.Z.; Li, Y.C.; Li, X.H. Graphene quantum dots as smart probes for biosensing. Anal. Methods-UK 2016, 8, 4001–4016. [Google Scholar] [CrossRef]
- Essner, J.B.; Baker, G.A. The emerging roles of carbon dots in solar photovoltaics: A critical review. Environ. Sci.-Nano 2017, 4, 1216–1263. [Google Scholar] [CrossRef]
- Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636. [Google Scholar] [CrossRef]
- Zhu, S.J.; Song, Y.B.; Zhao, X.H.; Shao, J.R.; Zhang, J.H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Dey, S.; Govindaraj, A.; Biswas, K.; Rao, C.N.R. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chem. Phys. Lett. 2014, 595, 203–208. [Google Scholar] [CrossRef]
- Biazar, N.; Poursalehi, R.; Delavari, H. Optical and Structural Properties of Carbon dots/TiO2 Nanostructures Prepared via DC arc Discharge in Liquid. In Proceedings of the 6th International Biennial Conference on Ultrafine Grained and Nanostructured Materials (UFGNSM), Kish Island, Iran, 12–13 November 2017; Sohi, M.H., Zamani, C., Eds.; AIP Publishing LLC: Melville, NY, USA, 2018. [Google Scholar]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.F.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Li, X.Y.; Zeng, X.Y.; Lu, Y.F. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun. 2016, 52, 819–822. [Google Scholar] [CrossRef]
- Kazemizadeh, F.; Malekfar, R.; Parvin, P. Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J. Phys. Chem. Solids 2017, 104, 252–256. [Google Scholar] [CrossRef]
- Nguyen, V.; Zhao, N.; Yan, L.H.; Zhong, P.; Nguyen, V.C.; Le, P.H. Double-pulse femtosecond laser ablation for synthesis of ultrasmall carbon nanodots. Mater. Res. Express 2020, 7, 015606. [Google Scholar] [CrossRef]
- Liu, H.P.; Ye, T.; Mao, C.D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Han, X.Y.; Lin, Z.Y.; Fan, Y.L.; Shi, G.Y.; Zhang, S.Q.; Zhang, M. Facile reflux synthesis of polyethyleneimine-capped fluorescent carbon dots for sequential bioassays toward Cu2+/H2S and its application for a logic system. Biotechnol. Appl. Biochem. 2019, 66, 426–433. [Google Scholar] [CrossRef]
- Meng, X.; Chang, Q.; Xue, C.R.; Yang, J.L.; Hu, S.L. Full-colour carbon dots: From energy-efficient synthesis to concentration-dependent photoluminescence properties. Chem. Commun. 2017, 53, 3074–3077. [Google Scholar] [CrossRef]
- Bao, L.; Liu, C.; Zhang, Z.L.; Pang, D.W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667. [Google Scholar] [CrossRef]
- Zhou, J.G.; Booker, C.; Li, R.Y.; Zhou, X.T.; Sham, T.K.; Sun, X.L.; Ding, Z.F. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745. [Google Scholar] [CrossRef]
- Deng, J.H.; Lu, Q.J.; Mi, N.X.; Li, H.T.; Liu, M.L.; Xu, M.C.; Tan, L.; Xie, Q.J.; Zhang, Y.Y.; Yao, S.Z. Electrochemical synthesis of carbon nanodots directly from alcohols. Chem.-Eur. J. 2014, 20, 4993–4999. [Google Scholar] [CrossRef]
- Mishra, M.K.; Kundu, S.; De, G. Stable fluorescent CdS:Cu QDs and their hybridization with carbon polymer dots for white light emission. J. Mater. Chem. C 2016, 4, 1665–1674. [Google Scholar] [CrossRef]
- Joseph, J.; Anappara, A.A. White-light-emitting carbon dots prepared by the electrochemical exfoliation of graphite. Chem. Phys. Chem. 2016, 18, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Muthusankar, G.; Sasikumar, R.; Chen, S.M.; Gopu, G.; Sengottuvelan, N.; Rwei, S.P. Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries. J. Colloid Interface Sci. 2018, 523, 191–200. [Google Scholar] [CrossRef]
- Xu, J.; Sahu, S.; Cao, L.; Anilkumar, P.; Tackett, K.N.; Qian, H.J.; Bunker, C.E.; Guliants, E.A.; Parenzan, A.; Sun, Y.P. Carbon nanoparticles as chromophores for photon harvesting and photoconversion. Chemphyschem 2011, 12, 3604–3608. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Khazieieva, O.A.; Koshechko, V.G.; Pokhodenko, V.D. Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J. Mater. Chem. 2012, 22, 12465–12467. [Google Scholar] [CrossRef]
- Nguyen, V.; Yan, L.H.; Si, J.H.; Hou, X. Femtosecond laser-assisted synthesis of highly photoluminescent carbon nanodots for Fe3+ detection with high sensitivity and selectivity. Opt. Mater. Express 2016, 6, 312–320. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Gupta, A.; Verma, N.C.; Khan, S.; Tiwari, S.; Chaudhary, A.; Nandi, C.K. Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media. Sens. Actuators B-Chem. 2016, 232, 107–114. [Google Scholar] [CrossRef]
- Liu, L.Z.; Mi, Z.; Hu, Q.; Li, C.Q.; Li, X.H.; Feng, F. Green synthesis of fluorescent carbon dots as an effective fluorescence probe for morin detection. Anal. Methods-UK 2019, 11, 353–358. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.L.; Li, Y.L.; Wang, Z.J.; Yang, F.; Yang, X.R. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 1, 5118–5120. [Google Scholar] [CrossRef]
- Choi, Y.; Thongsai, N.; Chae, A.; Jo, S.; Kang, E.B.; Paoprasert, P.; Park, S.Y.; In, I. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J. Ind. Eng. Chem. 2017, 47, 329–335. [Google Scholar] [CrossRef]
- Naghdi, T.; Atashi, M.; Golmohammadi, H.; Saeedi, I.; Alanezhad, M. Carbon quantum dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing. J. Ind. Eng. Chem. 2017, 52, 162–167. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.B.; Fu, J.P.; Fu, X.C.; Gan, W.; Hao, H.Q. Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection. J. Nanopart. Res. 2018, 20, 41. [Google Scholar] [CrossRef]
- Barman, M.K.; Jana, B.; Bhattacharyya, S.; Patra, A. Photophysical properties of doped carbon dots (N, P, and B) and their influence on electron/hole transfer in carbon dots-Nickel (II) phthalocyanine conjugates. J. Phys. Chem. C 2014, 118, 20034–20041. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, P.; Wang, T.Y.; Kong, J.L.; Xiong, H.M. Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging. Nanotechnology 2014, 25, 205604. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhao, X.R.; Bian, W.; Tang, X.J. Microwave-assisted synthesis of nitrogen-rich carbon dots as effective fluorescent probe for sensitive detection of Ag+. Mater. Chem. Front. 2019, 3, 2751–2758. [Google Scholar] [CrossRef]
- Yoon, B.J.; Hong, E.H.; Jee, S.E.; Yoon, D.M.; Shim, D.S.; Son, G.Y.; Lee, Y.J.; Lee, K.H.; Kim, H.S.; Park, C.G. Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J. Am. Chem. Soc. 2005, 127, 8234–8235. [Google Scholar] [CrossRef]
- Takagi, Y.; Tauchi, L.; Nguyen-Tran, H.D.; Ohta, T.; Shimizu, M.; Ohta, K. Development of a novel method to synthesize carbon nanotubes from granulated polystyrene and nickel nanoparticles by microwave heating. J. Mater. Chem. 2011, 21, 14569–14574. [Google Scholar] [CrossRef]
- Li, H.; Shao, F.Q.; Huang, H.; Feng, J.J.; Wang, A.J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens. Actuators B-Chem. 2016, 226, 506–511. [Google Scholar] [CrossRef]
- Li, H.T.; He, X.D.; Liu, Y.; Huang, H.; Lian, S.Y.; Lee, S.T.; Kang, Z.H. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 2011, 49, 605–609. [Google Scholar] [CrossRef]
- Qiang, R.B.; Yang, S.R.; Hou, K.M.; Wang, J.Q. Synthesis of carbon quantum dots with green luminescence from potato starch. New J. Chem. 2019, 43, 10826–10833. [Google Scholar] [CrossRef]
- Wang, X.; Yang, P.; Feng, Q.; Meng, T.T.; Wei, J.; Xu, C.Y.; Han, J.Q. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging. Polymers 2019, 11, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.Y.; Cui, Y.; Liu, M.Y.; Chen, J.Y.; Wan, Q.; Wen, Y.Q.; Deng, F.J.; Zhou, N.G.; Zhang, X.Y.; Wei, Y. A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. J. Colloid Interface Sci. 2018, 532, 767–773. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, L. One-step sonochemical synthesis of versatile nitrogen-doped carbon quantum dots for sensitive detection of Fe2+ ions and temperature in vitro. Mater. Sci. Eng. C-Mater. 2019, 101, 352–359. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, C.Y.; Liu, Y. A novel one-step approach to synthesize fluorescent carbon nanoparticles. Eur. J. Inorg. Chem. 2010, 28, 4411–4414. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Chen, W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 2014, 55, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fan, Y.; Zhang, L.; Wang, Q.; Fu, H.Y.; She, Y.B. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples. Spectrochim. Acta A 2019, 220, UNSP 117109. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.R.; Niu, N.; Chen, L.G. Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione. Anal. Bioanal. Chem. 2019, 411, 5519–5530. [Google Scholar] [CrossRef]
- Xu, Q.; Kuang, T.R.; Liu, Y.; Cai, L.L.; Peng, X.F.; Sreeprasad, T.S.; Zhao, P.; Yu, Z.Q.; Li, N. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219. [Google Scholar] [CrossRef]
- Qu, D.; Miao, X.; Wang, X.T.; Nie, C.; Li, Y.X.; Luo, L.; Sun, Z.C. Se & N co-doped carbon dots for high-performance fluorescence imaging agent of angiography. J. Mater. Chem. B 2017, 5, 4988–4992. [Google Scholar]
- Zhao, C.X.; Jiao, Y.; Hua, J.H.; Yang, J.; Yang, Y.L. Hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for the detection of dopamine. J. Fluoresc. 2017, 28, 269–276. [Google Scholar] [CrossRef]
- Liu, W.; Cui, Y.H.; Li, T.T.; Diao, H.P.; Wei, S.Y.; Li, L.H.; Chang, H.H.; Zhang, B.; Wei, W.L. Green and facile synthesis of highly photoluminescent nitrogen-doped carbon dots for sensors and cell imaging. Chem. Lett. 2018, 47, 421–424. [Google Scholar] [CrossRef]
- Yang, Y.H.; Cui, J.H.; Zheng, M.T.; Hu, C.F.; Tan, S.Z.; Xiao, Y.; Yang, Q.; Liu, Y.L. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun. 2012, 48, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Jiang, T.; Zhao, X.J.; Xiong, X.H.; Xiao, S.J.; Zhu, Z.Q. Preparation and application of fluorescent carbon dots. J. Nanomater. 2015, 787862. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots prepared for fluorescence and chemiluminescence sensing. Sci. China Chem. 2019, 62, 968–981. [Google Scholar] [CrossRef]
- Miao, P.; Han, K.; Tang, Y.G.; Wang, B.D.; Lin, T.; Cheng, W.B. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale 2015, 7, 1586–1595. [Google Scholar] [CrossRef]
- Ye, S.L.; Huang, J.J.; Luo, L.; Fu, H.J.; Sun, Y.M.; Shen, Y.D.; Lei, H.T.; Xu, Z.L. Preparation of carbon dots and their application in food analysis as signal probe. Chin. J. Anal. Chem. 2017, 45, 1571–1581. [Google Scholar] [CrossRef]
- Luo, X.L.; Han, Y.; Chen, X.M.; Tang, W.Z.; Yue, T.L.; Li, Z.H. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci. Technol. 2020, 95, 149–161. [Google Scholar] [CrossRef]
- Deleu, L.J.; Wilderjans, E.; Van Haesendonck, I.; Courtin, C.M.; Brijs, K.; Delcour, J.A. Storage induced conversion of ovalbumin into S-ovalbumin in eggs impacts the properties of pound cake and its batter. Food Hydrocoll. 2015, 49, 208–215. [Google Scholar] [CrossRef]
- Fu, X.; Sheng, L.; Yu, Y.S.; Ma, M.H.; Cai, Z.X.; Huang, X. Rapid and universal detection of ovalbumin based on N,O,P-co-doped carbon dots-fluorescence resonance energy transfer technology. Sens. Actuators B-Chem. 2018, 269, 278–287. [Google Scholar] [CrossRef]
- Purbia, R.; Paria, S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron. 2016, 79, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Qiao, C.F.; Chen, Y.W.; Zhao, J.; Cui, X.M.; Zhang, Q.W.; Liu, X.M.; Hu, D.J. A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of Panax notoginseng used as a functional food. J. Chromatogr. A 2013, 1313, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Kao, T.H.; Shiau, C.Y.; Chen, B.H. Functional components in Scutellaria barbata D. Don with anti-inflammatory activity on RAW 264.7 cells. J. Food Drug Anal. 2018, 26, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Yang, L.; Yuan, Y.S.; Pan, S.; Yang, J.D.; Yan, J.J.; Zhang, H.; Sun, Q.Q.; Hu, X.L. A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect. Spectrochim. Acta A 2018, 189, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Umar, A.; Sood, S.; Mehta, S.K.; Kansal, S.K. Photoluminescent c-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. J. Alloys Compd. 2018, 748, 818–853. [Google Scholar] [CrossRef]
- Kvasnicka, F.; Copikova, J.; Sevcik, R.; Kratka, J.; Syntytsia, A.; Voldrich, M. Determination of phenolic acids by capillary zone electrophoresis and HPLC. Open Chem. 2008, 6, 410–418. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, Z.J.; Li, Y.; Liu, Y.; Cai, W.; Li, C.; Lu, J.Q.; Qiao, Y.J. A strategy for comprehensive identification of sequential constituents using ultra-high-performance liquid chromatography coupled with linear ion trap-orbitrap mass spectrometer, application study on chlorogenic acids in Flos Lonicerae Japonicae. Talanta 2016, 147, 16–27. [Google Scholar] [CrossRef]
- Mantzorou, M.; Pavlidou, E.; Vasios, G.; Tsagalioti, E.; Giaginis, C. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother. Res. 2018, 32, 957–975. [Google Scholar] [CrossRef]
- Zhang, S.S.; Zou, J.; Li, P.Y.; Zheng, X.M.; Feng, D. Curcumin protects against atherosclerosis in apolipoprotein E-Knockout mice by inhibiting toll-like receptor 4 expression. J. Agric. Food Chem. 2018, 66, 449–456. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, X.J.; Dong, W.J.; Zhou, R.X.; Shuang, S.M.; Dong, C. Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for Curcumin determination in real sample and cellular imaging. Talanta 2018, 183, 61–69. [Google Scholar] [CrossRef]
- Xu, L.H.; Pan, M.F.; Fang, G.Z.; Wang, S. Carbon dots embedded metal-organic framework@molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sens. Actuators B-Chem. 2019, 286, 321–327. [Google Scholar] [CrossRef]
- Muthusankar, G.; Sethupathi, M.; Chen, S.M.; Devi, R.K.; Vinoth, R.; Gopu, G.; Anandhan, N.; Sengottuvelan, N. N-doped carbon quantum dots @ hexagonal porous copper oxide decorated multiwall carbon nanotubes: A hybrid composite material for an efficient ultra-sensitive determination of caffeic acid. Compos. Part B-Eng. 2019, 174, UNSP 106973. [Google Scholar] [CrossRef]
- Zhou, X.M.; Tian, Z.M.; Li, J.; Ruan, H.; Ma, Y.Y.; Yang, Z.; Qu, Y.Q. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 2014, 6, 2603–2607. [Google Scholar] [CrossRef] [PubMed]
- Atchudan, R.; Muthuchamy, N.; Edison, T.N.J.I.; Perumal, S.; Vinodh, R.; Park, K.H.; Lee, Y.R. An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens. Bioelectron. 2019, 120, 160–169. [Google Scholar] [CrossRef]
- Sinduja, B.; John, S.A. Sensitive determination of rutin by spectrofluorimetry using carbon dots synthesized from a non-essential amino acid. Spectrochim. Acta A 2018, 193, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.W.; Zou, X.M.; Song, S.H.; Chen, G.H. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Liang, J.S.; Luo, S.L.; Liu, C.B.; Tang, Y.H. Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene. Anal. Chem. 2013, 85, 7720–7725. [Google Scholar] [CrossRef]
- Pan, M.F.; Yin, Z.J.; Liu, K.X.; Du, X.L.; Liu, H.L.; Wang, S. Carbon-based nanomaterials in sensors for food safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.W.; Tang, J.Q.; Liu, H.L. Rapid determination of lambda-cyhalothrin using a fluorescent probe based on ionic-liquid-sensitized carbon dots coated with molecularly imprinted polymers. Anal. Bioanal. Chem. 2019, 411, 5309–5316. [Google Scholar] [CrossRef]
- Chen, L.X.; Wang, X.Y.; Lu, W.H.; Wu, X.Q.; Li, J.H. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Wu, M.; Fan, Y.J.; Li, J.W.; Lu, D.Q.; Guo, Y.P.; Xie, L.W.; Wu, Y.Q. Vinyl phosphate-functionalized, magnetic, molecularly-imprinted polymeric microspheres’ enrichment and carbon dots’ fluorescence-detection of organophosphorus pesticide residues. Polymers 2019, 11, 1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.Z.; Zhao, S.J.; Wu, S.L.; Huang, L.; Xu, T.; Xing, X.J.; Lan, M.H.; Song, X.Z. A carbon dots-based fluorescent probe for turn-on sensing of ampicillin. Dyes Pigment. 2020, 172, UNSP 107846. [Google Scholar] [CrossRef]
- Raksawong, P.; Nurerk, P.; Chullasat, K.; Kanatharana, P.; Bunkoed, O. A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Microchim. Acta 2019, 186. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Zhao, L.; Xu, Y.; Zhou, T.Y.; Liu, H.C.; Huang, N.; Ding, J.; Li, Y.; Ding, L. Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta 2018, 185, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Li, H.Y.; Wang, L.; Zhang, P.; Zhou, T.Y.; Ding, H.; Ding, L. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 2015, 146, 34–40. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; El Wekil, M.M.; Mahnashi, M.H.; Ali, M.F.B.; Alkahtani, S.A. Modification of N,S co-doped graphene quantum dots with p-aminothiophenol-functionalized gold nanoparticles for molecular imprint-based voltammetric determination of the antiviral drug sofosbuvir. Microchim. Acta 2019, 186, UNSP 617. [Google Scholar] [CrossRef]
- Chen, S.; Hai, X.; Chen, X.W.; Wang, J.H. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 2014, 86, 6689–6694. [Google Scholar] [CrossRef]
- Pathak, P.K.; Kumar, A.; Prasad, B.B. Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens. Bioelectron. 2019, 127, 10–18. [Google Scholar] [CrossRef]
- Pan, M.F.; Yang, J.Y.; Liu, K.X.; Yin, Z.J.; Ma, T.Y.; Liu, S.M.; Xu, L.H.; Wang, S. Noble metal nanostructured materials for chemical and biosensing systems. Nanomaterials 2020, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Wu, Y.G.; Zhou, P.; Yang, W.P.; Tao, H.; Qiu, S.Y.; Feng, C.W. A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. Analyst 2018, 143, 5151–5160. [Google Scholar] [CrossRef]
- Zhan, T.R.; Ding, G.Y.; Cao, W.; Li, J.M.; She, X.L.; Teng, H.N. Amperometric sensing of catechol by using a nanocomposite prepared from Ag/Ag2O nanoparticles and N,S-doped carbon quantum dots. Microchim. Acta 2019, 186, 743. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ning, D.H.; Zhang, C.; Liu, Z.J.; Zhang, R.L.; Zhao, J.; Zhao, T.T.; Liu, B.H.; Zhang, Z.P. Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions. ACS Appl. Mater. Interfaces 2017, 9, 18897–18903. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Wang, Y.Y.; Yang, X.M. Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale 2018, 10, 8139–8145. [Google Scholar] [CrossRef]
- Tang, H.B.; Zhu, C.H.; Meng, G.W.; Wu, N.Q. Review-surface-enhanced raman scattering sensors for food safety and environmental monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. [Google Scholar] [CrossRef]
- Li, Y.W.; Chen, Y.Z.; Yu, H.; Tian, L.M.; Wang, Z. Portable and smart devices for monitoring heavy metal ions integrated with nanomaterials. TrAC-Trends Anal. Chem. 2018, 98, 190–200. [Google Scholar] [CrossRef]
- Shamsipur, M.; Molaei, K.; Molaabasi, F.; Hosseinkhani, S.; Alizadeh, N.; Alipour, M.; Moassess, S. One-step synthesis and characterization of highly luminescent nitrogen and phosphorus co-doped carbon dots and their application as highly selective and sensitive nanoprobes for low level detection of uranyl ion in hair and water samples and application to cellular imaging. Sens. Actuators B-Chem. 2018, 257, 772–782. [Google Scholar]
- Huang, S.; Yang, E.L.; Yao, J.D.; Chu, X.; Liu, Y.; Xiao, Q. Nitrogen, phosphorus and sulfur tri-doped carbon dots are specific and sensitive fluorescent probes for determination of chromium (VI) in water samples and in living cells. Microchim. Acta 2019, 186, 851. [Google Scholar] [CrossRef]
- Ming, F.L.; Hou, J.Z.; Hou, C.J.; Yang, M.; Wang, X.F.; Li, J.W.; Huo, D.Q.; He, Q. One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water. Spectrochim. Acta A 2019, 222, 117165. [Google Scholar] [CrossRef]
- Lu, K.H.; Lin, J.H.; Lin, C.Y.; Chen, C.F.; Yeh, Y.C. A fluorometric paper test for chromium (VI) based on the use of N-doped carbon dots. Microchim. Acta 2019, 186, 227. [Google Scholar] [CrossRef]
- Qiao, G.X.; Lu, D.; Tang, Y.P.; Gao, J.W.; Wang, Q.M. Smart choice of carbon dots as a dual-mode onsite nanoplatform for the trace level detection of Cr2O72−. Dyes Pigment. 2019, 163, 102–110. [Google Scholar] [CrossRef]
- Raji, K.; Ramanan, V.; Ramamurthy, P. Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au3+ ions in aqueous medium and in in vitro multicolor cell imaging. New J. Chem. 2019, 43, 11710–11719. [Google Scholar] [CrossRef]
- Han, Z.; Nan, D.Y.; Yang, H.; Sun, Q.Q.; Pan, S.; Liu, H.; Hu, X.L. Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione. Sens. Actuators B-Chem. 2019, 298, 126842. [Google Scholar] [CrossRef]
- Zu, F.L.; Yan, F.Y.; Bai, Z.J.; Xu, J.X.; Wang, Y.Y.; Huang, Y.C.; Zhou, X.G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Chen, L.F.; Tian, X.K.; Yang, C.; Li, Y.; Zhou, Z.X.; Wang, Y.X.; Xiang, F. Highly selective and sensitive determination of copper ion based on a visual fluorescence method. Sens. Actuators B-Chem. 2017, 240, 66–75. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.K.; Liu, C.Y.; Xu, Z.H.; Zhu, B.C.; Wang, N.; Wang, K.; Wang, J.T. A colorimetric and fluorescent probe for the detection of Cu2+ in a complete aqueous solution. Anal. Sci. 2018, 34, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.B.; Qin, X.Y.; Liu, S.; Chang, G.H.; Zhang, Y.W.; Luo, Y.L.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X.P. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (II) ions. Anal. Chem. 2012, 84, 5351–5357. [Google Scholar] [CrossRef]
- Hou, Y.X.; Lu, Q.J.; Deng, J.H.; Li, H.T.; Zhang, Y.Y. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta 2015, 866, 69–74. [Google Scholar] [CrossRef]
- Trucksess, M.W. Mycotoxins. J. AOAC Int. 1998, 81, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Wall-Martinez, H.A.; Ramirez-Martinez, A.; Wesolek, N.; Brabet, C.; Durand, N.; Rodriguez-Jimenes, G.C.; Garcia-Alvarado, M.A.; Salgado-Cervantes, M.A.; Robles-Olvera, V.J.; Roudot, A.C. Risk assessment of exposure to mycotoxins (aflatoxins and fumonisins) through corn tortilla intake in Veracruz City (Mexico). Food Addit. Contam. A 2019, 36, 929–939. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Cramer, B.; Dall’Asta, C.; Iha, M.H.; Lattanzio, V.M.T.; Maragos, C.; Solfrizzo, M.; Stranska, M.; Stroka, J.; Sumarah, M. Developments in mycotoxin analysis: An update for 2018-19. World Mycotoxin J. 2020, 13, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, H.; Rodricks, J.V. Current efforts of the food and drug administration to control mycotoxins in food. J.-Assoc. Off. Anal. Chem. 1973, 56, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.R.G.; Ricelli, A.; Fanelli, C.; Caputo, D.; de Cesare, G.; Chu, V.; Aires-Barros, M.R.; Conde, J.P. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018, 243, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.G.; Yao, H.B.; Liu, Y.; Dai, X.F.; Brown, R.L.; Bhatnagar, D. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products. Crit. Rev. Food Sci. 2019, 59, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Rustom, I.Y.S. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chem. 1997, 59, 57–67. [Google Scholar] [CrossRef]
- Liang, G.H.; Zhai, H.Y.; Huang, L.; Tan, X.C.; Zhou, Q.; Yu, X.; Lin, H.D. Synthesis of carbon quantum dots-doped dummy molecularly imprinted polymer monolithic column for selective enrichment and analysis of aflatoxin B1 in peanut. J. Pharm. Biomed. 2018, 149, 258–264. [Google Scholar] [CrossRef]
- Vosough, M.; Bayat, M.; Salemi, A. Matrix-free analysis of aflatoxins in pistachio nuts using parallel factor modeling of liquid chromatography diode-array detection data. Anal. Chim. Acta 2010, 663, 11–18. [Google Scholar] [CrossRef]
- Rahmani, M.; Ghasemi, E.; Sasani, M. Application of response surface methodology for air assisted-dispersive liquid-liquid microextraction of deoxynivalenol in rice samples prior to HPLC-DAD analysis and comparison with solid phase extraction cleanup. Talanta 2016, 165, 27–32. [Google Scholar] [CrossRef]
- Guo, W.; Pi, F.W.; Zhang, H.X.; Sun, J.D.; Zhang, Y.Z.; Sun, X.L. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens. Bioelectron. 2017, 98, 299–304. [Google Scholar] [CrossRef]
- Shao, M.Y.; Yao, M.; Saeger, S.D.; Yan, L.P.; Song, S.Q. Carbon quantum dots encapsulated molecularly imprinted fluorescence quenching particles for sensitive detection of zearalenone in corn sample. Toxins 2018, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.F.; Ma, T.Y.; Yang, J.Y.; Li, S.J.; Liu, S.M.; Wang, S. Development of lateral flow immunochromatographic assays using colloidal Au sphere and nanorods as signal marker for the determination of zearalenone in cereals. Foods 2020, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Wang, J.P.; Sheng, W.; Wen, W.J.; Gu, Y.; Wang, S. Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Microchim. Acta 2018, 185, UNSP 388. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.K.; Tan, R.; Chen, D. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Talanta 2018, 182, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.H.; Wei, Q.Y.; Sun, D.W. Carbon dots: Principles and their applications in food quality and safety detection. Crit. Rev. Food Sci. 2018, 14, 2466–2475. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Liu, Y.; Geng, J.H.; Kou, X.H.; Xin, Z.H.; Yang, D.Y. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef]
- Martins, F.C.O.L.; Sentanin, M.A.; De Souza, D. Analytical methods in food additives determination: Compounds with functional applications. Food Chem. 2018, 272, 732–750. [Google Scholar] [CrossRef]
- Su, A.M.; Zhong, Q.M.; Chen, Y.Y.; Wang, Y.L. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Anal. Chim. Acta 2018, 1023, 115–120. [Google Scholar]
- Li, Q.; Song, P.; Wen, J.G. Melamine and food safety: A 10-year review. Curr. Opin. Food Sci. 2019, 30, 79–84. [Google Scholar] [CrossRef]
- Hu, X.T.; Shi, J.Y.; Shi, Y.Q.; Zou, X.B.; Arslan, M.; Zhang, W.; Huang, X.W.; Li, Z.H.; Xu, Y.W. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chem. 2019, 272, 58–65. [Google Scholar] [CrossRef]
- Cui, C.F.; Lei, J.Y.; Yang, L.G.; Shen, B.; Wang, L.Z.; Zhang, J.L. Carbon-dot-encapsulated molecularly imprinted mesoporous organosilica for fluorescent sensing of rhodamine 6G. Res. Chem. Intermed. 2018, 44, 4633–4640. [Google Scholar] [CrossRef]
- Xu, H.; Yang, X.P.; Li, G.; Zhao, C.; Liao, X.J. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J. Agric. Food Chem. 2015, 63, 6707–6714. [Google Scholar] [CrossRef]
- Yang, X.P.; Xu, J.; Luo, N.; Tang, F.L.; Zhang, M.X.; Zhao, B. N,Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food Chem. 2020, 310, 125832. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, J. Small carbon quantum dots, large photosynthesis enhancement. J. Agric. Food Chem. 2018, 66, 9159–9161. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.M.; Li, C.N.; Wen, G.Q.; Liang, A.H.; Jiang, Z.L. A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification. Talanta 2020, 209, 120529. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhu, Z.Q.; Chen, M.Z.; Zhou, X.Y.; Chen, W.M. Microwave-assisted synthesis of polyamine-functionalized carbon dots from xylan and their use for the detection of tannic acid. Spectrochim. Acta A 2019, 213, 301–308. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Xie, X.; Liu, K.; Yang, J.; Hong, L.; Wang, S. Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials 2020, 10, 930. https://doi.org/10.3390/nano10050930
Pan M, Xie X, Liu K, Yang J, Hong L, Wang S. Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials. 2020; 10(5):930. https://doi.org/10.3390/nano10050930
Chicago/Turabian StylePan, Mingfei, Xiaoqian Xie, Kaixin Liu, Jingying Yang, Liping Hong, and Shuo Wang. 2020. "Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis" Nanomaterials 10, no. 5: 930. https://doi.org/10.3390/nano10050930
APA StylePan, M., Xie, X., Liu, K., Yang, J., Hong, L., & Wang, S. (2020). Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials, 10(5), 930. https://doi.org/10.3390/nano10050930