Evolving Functional Features of Peptidyl-Prolyl cis-trans Isomerases (PPIases) in Mono-Cellular versus Multi-Cellular Organisms
A special issue of Biomolecules (ISSN 2218-273X).
Deadline for manuscript submissions: closed (30 October 2018) | Viewed by 64470
Special Issue Editor
Interests: proteomics; bioinformatics; networks of proteins (protein networking) in cells and extracellular matrix
Special Issue Information
More than three decades ago, it was shown that various cells express proteins having peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is one of the essential factors controlling protein folding. Several groups of PPIases are encoded in the genomes of disparate organisms, spanning throughout all kingdoms of life. Multiple genes coding for three distinct families of PPIases have been characterized in those organisms, namely cyclophilins, FKBPs, Pin1 (parvulin in prokaryotes), and trigger factors that are only expressed in prokayotes. Moreover, it was found that mammalian genomes encode fifteen isoforms of the archetypal FKBP12, nineteen different isoforms of cyclophilins, and two isoforms of Pin1. The names of these first two groups of proteins were derived from their capacity to form high-affinity complexes with hydrophobic macrocyclic antibiotics, such as FK506, rapamycin, and cyclosporine A. These three suppressive molecules affect crucial antigen-driven responses of T cells and related networks of cells controlling immune system in mammalian organisms. Since those seminal discoveries, many of the diversified functional features of the PPIases have been investigated; yet many functional and structural aspects of those proteins still wait to be unraveled. Such a diversified set of activities encompassed by various members of the PPIase superfamily of proteins is due to a considerable variation of sequences and structural attributes of the PPIase domains themselves. Large PPIases are fusion proteins containing from one to four consecutive PPIase domains that are flanked by other structural units. Both, small monodomain PPIases and their large forms are involved in diverse activities in the nucleus, i.e., spliceosome assembly and chromatin organization. The large PPIases were originated by splicing of the archetypal PPIase domain (cyclophilin-like and FKBP-like) with various structural units and sequence motifs and the origin of some of them can be traced down to prokaryotes and lower eukaryotes.
Relatively high contents of PPIases in cells suggest that these proteins bind and regulate diverse intracellular signalization networks. For example, it has been shown that some PPIases are associated to supramacromolecular entities and receptors whose functional features can be altered by immunosuppressive and non-immunosuppressive drugs, which have strong affinity to PPIase shallow cavity. Since major changes in signaling networks are due to steric interferences of the effector domain of bound ligand to a given PPIase, it could be suggested that various effector domains of novel natural or synthetic compounds carried by PPIases would modulate various targets in cells. The PPIases are at the interface of protein complexes, RNA– and DNA–protein complexes, and some of them are specifically associated to membrane-embedded proteins and receptors. Decoding diverse physiological effects caused by drugs that use PPIase as intracellular carriers could contribute to the process of selective targeting of those ligands (drugs) and enhancing positive outcomes in clinical treatments of disease.
We, thus, invite scientists working on PPIase research to submit their original research or review articles for publication in this Special Issue. Topics of interest include (but are not restricted to) proteins' networks in which PPIases are involved, functional aspects of PPIases, and biological relevance of immunosuppressive macrolides–PPIase complexes.
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- PPIase
- Protein folding
- FKBPs and their targets
- Cyclophilins
- Protein networks regulation
- RNA- and DNA-bound PPIases
- Clinical aspects of diverse immunosuppressive macrolides–PPIase complexes
- Selective high affinity binders of PPIases
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.