energies-logo

Journal Browser

Journal Browser

Advancements in Catalytic Conversion of Biomass into Biofuels and Chemicals

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A4: Bio-Energy".

Deadline for manuscript submissions: closed (10 August 2020) | Viewed by 20459

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
Department Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea
Interests: biofuel; bio-based product; biochemical; pretreatment; bioconversion process integration; biorefinery; bioprocessing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
Interests: biological/thermochemical conversion of biomass to fuels and chemicals; bio-based material application; elucidation of biomass and bio-product properties; development of lignocellulosic biorefinery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Numerous efforts have been devoted to using biomass as a feedstock for the production of bio-based materials, biochemicals, and biofuels that reduce greenhouse gas emissions and dependence on conventional fossil resources.

Conversion strategies for the production of platform chemicals, building blocks, fine chemicals, and biofuels, include a wide range of processes, for example, chemical and mechanical pretreatment for improved carbohydrates production, fractionation of biomass into carbohydrates and lignin and their further conversions, microbial and enzymatic conversion of biomass into valuable products, direct catalytic conversion of biomass or its components into chemicals and fuels.

The goal of this Special Issue is to publish both recent innovative research results as well as review papers in the area of bioenergy and value-added chemicals from various feedstock through chemical and/or biological catalytic processes. Review and research papers on advances in the applications of carbohydrates and lignin components derived from biomass are also of interest.

If you would like to contribute a review paper, please contact one of the editors to discuss the relevance of the topic before submitting the manuscript.

Prof. Dr. Tae Hyun Kim
Prof. Dr. Chang Geun Yoo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioenergy
  • bio-based product
  • carbohydrates
  • lignin
  • catalytic conversion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

3 pages, 169 KiB  
Editorial
Advancements in Catalytic Conversion of Biomass into Biofuels and Chemicals
by Chang Geun Yoo and Tae Hyun Kim
Energies 2020, 13(20), 5438; https://doi.org/10.3390/en13205438 - 19 Oct 2020
Cited by 5 | Viewed by 2388
Abstract
The shortage of resources and increasing climate changes have brought the need for sustainable and renewable resources to people’s attention. Biomass is an earth-abundant material and has great potential as a feedstock for alternative fuels and chemicals. For the effective utilization of biomass, [...] Read more.
The shortage of resources and increasing climate changes have brought the need for sustainable and renewable resources to people’s attention. Biomass is an earth-abundant material and has great potential as a feedstock for alternative fuels and chemicals. For the effective utilization of biomass, this biopolymer has to be depolymerized and transformed into key building blocks and/or the targeted products, and biological or chemical catalysts are commonly used for the rapid and energy-efficient reactions. This Special Issue introduces recent advances in the catalytic conversion of biomass into biofuels and value-added products. Full article

Research

Jump to: Editorial

17 pages, 3120 KiB  
Article
Green Diesel Production over Nickel-Alumina Nanostructured Catalysts Promoted by Copper
by Mantha Gousi, Eleana Kordouli, Kyriakos Bourikas, Emmanouil Symianakis, Spyros Ladas, Christos Kordulis and Alexis Lycourghiotis
Energies 2020, 13(14), 3707; https://doi.org/10.3390/en13143707 - 18 Jul 2020
Cited by 20 | Viewed by 3443
Abstract
A series of nickel–alumina catalysts promoted by copper containing 1, 2, and 5 wt. % Cu and 59, 58, and 55 wt. % Ni, respectively, (symbols: 59Ni1CuAl, 58Ni2CuAl, 55Ni5CuAl) and a non-promoted catalyst containing 60 wt. % Ni (symbol: 60NiAl) were prepared following [...] Read more.
A series of nickel–alumina catalysts promoted by copper containing 1, 2, and 5 wt. % Cu and 59, 58, and 55 wt. % Ni, respectively, (symbols: 59Ni1CuAl, 58Ni2CuAl, 55Ni5CuAl) and a non-promoted catalyst containing 60 wt. % Ni (symbol: 60NiAl) were prepared following a one-step co-precipitation method. They were characterized using various techniques (N2 sorption isotherms, XRD, SEM-EDX, XPS, H2-TPR, NH3-TPD) and evaluated in the selective deoxygenation of sunflower oil using a semi-batch reactor (310 °C, 40 bar of hydrogen, 96 mL/min hydrogen flow rate, and 100 mL/1 g reactant to catalyst ratio). The severe control of the co-precipitation procedure and the direct reduction (without previous calcination) of precursor samples resulted in mesoporous nano-structured catalysts (most of the pores in the range 3–5 nm) exhibiting a high surface area (192–285 m2 g−1). The promoting action of copper is demonstrated for the first time for catalysts with a very small Cu/Ni weight ratio (0.02–0.09). The effect is more pronounced in the catalyst with the medium copper content (58Ni2CuAl) where a 17.2% increase of green diesel content in the liquid products has been achieved with respect to the non-promoted catalyst. The copper promoting action was attributed to the increase in the nickel dispersion as well as to the formation of a Ni-Cu alloy being very rich in nickel. A portion of the Ni-Cu alloy nanoparticles is covered by Ni0 and Cu0 nanoparticles in the 59Ni1CuAl and 55Ni5CuAl catalysts, respectively. The maximum promoting action observed in the 58Ni2CuAl catalyst was attributed to the finding that, in this catalyst, there is no considerable masking of the Ni-Cu alloy by Ni0 or Cu0. The relatively low performance of the 55Ni5CuAl catalyst with respect to the other promoted catalysts was attributed, in addition to the partial coverage of Ni-Cu alloy by Cu0, to the remarkably low weak/moderate acidity and relatively high strong acidity exhibited by this catalyst. The former favors selective deoxygenation whereas the latter favors coke formation. Copper addition does not affect the selective-deoxygenation reactions network, which proceeds predominantly via the dehydration-decarbonylation route over all the catalysts studied. Full article
Show Figures

Graphical abstract

12 pages, 935 KiB  
Article
Kinetic Characterization of Enzymatic Hydrolysis of Apple Pomace as Feedstock for a Sugar-Based Biorefinery
by Alessandra Procentese, Maria Elena Russo, Ilaria Di Somma and Antonio Marzocchella
Energies 2020, 13(5), 1051; https://doi.org/10.3390/en13051051 - 26 Feb 2020
Cited by 10 | Viewed by 3280
Abstract
The enzymatic hydrolysis of cellulose from biomass feedstock in the sugar-based biorefinery chain is penalized by enzyme cost and difficulty to approach the theoretical maximum cellulose conversion degree. As a consequence, the process is currently investigated to identify the best operating conditions with [...] Read more.
The enzymatic hydrolysis of cellulose from biomass feedstock in the sugar-based biorefinery chain is penalized by enzyme cost and difficulty to approach the theoretical maximum cellulose conversion degree. As a consequence, the process is currently investigated to identify the best operating conditions with reference to each biomass feedstock. The present work reports an investigation regarding the enzymatic hydrolysis of apple pomace (AP). AP is an agro-food waste largely available in Europe that might be exploited as a sugar source for biorefinery purposes. A biomass pre-treatment step was required before the enzymatic hydrolysis to make available polysaccharides chains to the biocatalyst. The AP samples were pre-treated through alkaline (NaOH), acid (HCl), and enzymatic (laccase) delignification processes to investigate the effect of lignin content and polysaccharides composition on enzymatic hydrolysis. Enzymatic hydrolysis tests were carried out using a commercial cocktail (Cellic®CTec2) of cellulolytic enzymes. The effect of mixing speed and biomass concentration on the experimental overall glucose production rate was assessed. The characterization of the glucose production rate by the assessment of pseudo-homogeneous kinetic models was proposed. Data were analysed to assess kinetic parameters of pseudo-mechanistic models able to describe the glucose production rate during AP enzymatic hydrolysis. In particular, pseudo-homogeneous Michaelis and Menten, as well as Chrastil’s models were used. The effect of lignin content on the enzymatic hydrolysis rate was evaluated. Chrastil’s model provided the best description of the glucose production rate. Full article
Show Figures

Graphical abstract

15 pages, 1680 KiB  
Article
Extraction Behaviors of Lignin and Hemicellulose-Derived Sugars During Organosolv Fractionation of Agricultural Residues Using a Bench-Scale Ball Milling Reactor
by Tae Hoon Kim, Hyun Kwak, Tae Hyun Kim and Kyeong Keun Oh
Energies 2020, 13(2), 352; https://doi.org/10.3390/en13020352 - 10 Jan 2020
Cited by 9 | Viewed by 3616
Abstract
Ethanol organosolv fractionation combined with ball milling was conducted on three major agricultural residues: Rice husk (RH), rice straw (RS), and barley straw (BS). The highest lignin extraction yields of RH, RS, and BS were 55.2%, 53.1%, and 59.4% and the purity of [...] Read more.
Ethanol organosolv fractionation combined with ball milling was conducted on three major agricultural residues: Rice husk (RH), rice straw (RS), and barley straw (BS). The highest lignin extraction yields of RH, RS, and BS were 55.2%, 53.1%, and 59.4% and the purity of lignin recovered was 99.5% for RH and RS, and 96.8% for BS, with similar chemical characteristics, i.e., low molecular weight distributions (1453–1817 g/mol) and poly dispersity index (1.15–1.28). However, considering the simultaneous production of hemicellulose-derived sugars, distinctive fractionation behaviors were shown for the three agricultural residues. The highest hemicellulose-derived sugar yield was 73.8% when RH was fractionated at 170 °C for 30 min. Meanwhile, very low sugar yields of 31.9% and 35.7% were obtained from RS and BS, respectively. The highest glucan-to-glucose conversion yield from enzymatic hydrolysis of fractionated RH reached 85.2%. Meanwhile, the enzymatic digestibility of the fractionated RS and BS was 60.0% and 70.5%, respectively. Consequently, the fractionation efficiency for RH can be improved with fine refinement. For the case of RS, other fractionation process should be applied to achieve effective fractionation performance. Full article
Show Figures

Graphical abstract

14 pages, 1712 KiB  
Article
Application of Sulfated Tin (IV) Oxide Solid Superacid Catalyst to Partial Coupling Reaction of α-Pinene to Produce Less Viscous High-Density Fuel
by Seong-Min Cho, Chang-Young Hong, Se-Yeong Park, Da-Song Lee, June-Ho Choi, Bonwook Koo and In-Gyu Choi
Energies 2019, 12(10), 1905; https://doi.org/10.3390/en12101905 - 18 May 2019
Cited by 6 | Viewed by 2970
Abstract
Brønsted acid-catalyzed reactions of α-pinene have been studied because of their ability to produce various types of fragrance molecules. Beyond this application, dimeric hydrocarbon products produced from coupling reactions of α-pinene have been suggested as renewable high-density fuel molecules. In this context, this [...] Read more.
Brønsted acid-catalyzed reactions of α-pinene have been studied because of their ability to produce various types of fragrance molecules. Beyond this application, dimeric hydrocarbon products produced from coupling reactions of α-pinene have been suggested as renewable high-density fuel molecules. In this context, this paper presents the application of a sulfated tin(IV) oxide catalyst for the partial coupling reaction of α-pinene from turpentine. Brønsted acid sites inherent in this solid superacid catalyst calcined at 550 °C successfully catalyzed the reaction, giving the largest yield of dimeric products (49.6%) at 120 °C over a reaction time of 4 h. Given that the low-temperature viscosity of the mentioned dimeric products is too high for their use as a fuel in transportation engines, lowering the viscosity is an important avenue of study. Therefore, our partial coupling reaction of α-pinene provides a possible solution as a considerable amount of the isomers of α-pinene still remained after the reaction, which reduces the low-temperature viscosity. On the basis of a comparison of the reaction products, a plausible mechanism for the reaction involving coinstantaneous isomerization and coupling reaction of α-pinene was elucidated. Full article
Show Figures

Figure 1

11 pages, 1621 KiB  
Article
Improvement of Organosolv Fractionation Performance for Rice Husk through a Low Acid-Catalyzation
by Tae Hoon Kim, Hyun Jin Ryu and Kyeong Keun Oh
Energies 2019, 12(9), 1800; https://doi.org/10.3390/en12091800 - 11 May 2019
Cited by 14 | Viewed by 3803
Abstract
For the effective utilization of rice husk, organosolv fractionation was investigated to separate three main components (glucan, xylose, and lignin) with low acid concentration. Reaction temperatures of 170–190 °C, ethanol concentrations of 50%–70% (v/v), and sulfuric acid concentrations of [...] Read more.
For the effective utilization of rice husk, organosolv fractionation was investigated to separate three main components (glucan, xylose, and lignin) with low acid concentration. Reaction temperatures of 170–190 °C, ethanol concentrations of 50%–70% (v/v), and sulfuric acid concentrations of 0%–0.7% (w/v) were investigated, with the reaction time and liquid-to-solid ratio kept constant at 60 min and 10, respectively. The fractionation conditions for the efficient separation into the three components of rice husk were determined to be 180 °C, 60% (v/v) of ethanol, and 0.25% (w/v) of sulfuric acid. Under these fractionation conditions, 86.8% of the xylan and 77.5% of the lignin were removed from the rice husk, and xylose and lignin were obtained from the liquid in 67.6% and 49.8% yields, respectively. The glucan digestibility of the fractionated rice husk was 85.2% with an enzyme loading of 15 FPU (filter paper unit) of cellulase per g-glucan. Full article
Show Figures

Figure 1

Back to TopTop