Open AccessFeature PaperEditor’s ChoiceArticle
Non-Buffer Epi-AlGaN/GaN on SiC for High-Performance Depletion-Mode MIS-HEMTs Fabrication
by
Penghao Zhang, Luyu Wang, Kaiyue Zhu, Qiang Wang, Maolin Pan, Ziqiang Huang, Yannan Yang, Xinling Xie, Hai Huang, Xin Hu, Saisheng Xu, Min Xu, Chen Wang, Chunlei Wu and David Wei Zhang
Viewed by 1385
Abstract
A systematic study of epi-AlGaN/GaN on a SiC substrate was conducted through a comprehensive analysis of material properties and device performance. In this novel epitaxial design, an AlGaN/GaN channel layer was grown directly on the AlN nucleation layer, without the conventional doped thick
[...] Read more.
A systematic study of epi-AlGaN/GaN on a SiC substrate was conducted through a comprehensive analysis of material properties and device performance. In this novel epitaxial design, an AlGaN/GaN channel layer was grown directly on the AlN nucleation layer, without the conventional doped thick buffer layer. Compared to the conventional epi-structures on the SiC and Si substrates, the non-buffer epi-AlGaN/GaN structure had a better crystalline quality and surface morphology, with reliable control of growth stress. Hall measurements showed that the novel structure exhibited comparable transport properties to the conventional epi-structure on the SiC substrate, regardless of the buffer layer. Furthermore, almost unchanged carrier distribution from room temperature to 150 °C indicated excellent two-dimensional electron gas (2DEG) confinement due to the pulling effect of the conduction band from the nucleation layer as a back-barrier. High-performance depletion-mode MIS-HEMTs were demonstrated with on-resistance of 5.84 Ω·mm and an output current of 1002 mA/mm. The dynamic characteristics showed a much smaller decrease in the saturation current (only ~7%), with a quiescent drain bias of 40 V, which was strong evidence of less electron trapping owing to the high-quality non-buffer AlGaN/GaN epitaxial growth.
Full article
►▼
Show Figures