Advances in Forest Tree Genetics and Breeding

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 3912

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
Interests: common research fields in forest trees; conventional breeding; breeding strategy; genetic engineering/genome editing and marker-assisted breeding

E-Mail Website
Guest Editor
State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
Interests: genomics; genetic regulation; natural variation; marker-assisted breeding in forest trees

Special Issue Information

Dear Colleagues,

Forest trees are important resources that possess multiple values in ecological balance and economic development. They provide raw materials and products for various industries, such as timber, paper and furniture, to support local communities. The long-term health of forests needs to be enhanced by research outputs on forest tree genetics and breeding aiming to understand the genetic basis of complex traits. This field involves the study of genetic variation, identification/manipulation of genes or markers and the development of breeding strategies to improve important traits. The achievements of such studies are often attributed to the use of modern technologies such as high-throughput sequencing, genome editing and genome-wide association studies. This Special Issue will present the latest progress in the field of forest tree genetics and breeding, highlighting the potential of these studies in enhancing forest diversity, productivity and adaptability to changing environments.

Prof. Dr. Xiaohua Su
Dr. Yanguang Chu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • forest tree genetics and breeding
  • complex traits
  • genetic variation
  • genome editing
  • molecular markers
  • breeding strategy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 15436 KiB  
Article
Genome-Wide Identification and Expression Pattern Analysis of Nuclear Factor Y B/C Genes in Pinus koraiensis, and Functional Identification of LEAFY COTYLEDON 1
by Xiuyue Xu, Xin He, Qun Zhang and Ling Yang
Plants 2025, 14(3), 438; https://doi.org/10.3390/plants14030438 - 2 Feb 2025
Viewed by 300
Abstract
The nuclear factor Y (NF-Y) transcription factor is widely involved in various plant biological processes, such as embryogenesis, abscisic acid signaling, and abiotic stress responses. This study presents a comprehensive genome-wide identification and expression profile of transcription factors NF-YB and NF-YC in Pinus [...] Read more.
The nuclear factor Y (NF-Y) transcription factor is widely involved in various plant biological processes, such as embryogenesis, abscisic acid signaling, and abiotic stress responses. This study presents a comprehensive genome-wide identification and expression profile of transcription factors NF-YB and NF-YC in Pinus koraiensis. Eight NF-YB and seven NF-YC transcription factors were identified through bioinformatics analysis, including sequence alignment, phylogenetic tree construction, and conserved motif analysis. We evaluate the expression patterns of NF-YB/C genes in various tissues and somatic embryo maturation processes through the transcriptomics of ABA-treated tissues from multiple nutritional tissues, reproductive tissues, and somatic embryo maturation processes. The Leafy cotyledon1 (LEC1) gene belongs to the LEC1-type gene in the NF-YB family, numbered PkNF-YB7. In this study, we characterized the function of PkLEC1 during somatic embryonic development using genetic transformation techniques. The results indicate that PkNF-YB/C transcription factors are involved in the growth and development of nutritional tissues and reproductive organs, with specific high expression in PkNF-YB7 embryogenic callus, somatic embryos, zygotic embryos, and macropores. Most PkNF YB/C genes do not respond to ABA treatment during the maturation culture process. Compared with the absence of ABA, PkNF-YB8 was up-regulated in ABA treatment for one week (4.1 times) and two weeks (11.6 times). However, PkNF-YC5 was down-regulated in both one week (0.6 times) and two weeks (0.36 times) of culture, but the down-regulation trend was weakened in tissues treated with ABA (0.72–0.83 times). In addition, the promoter of PkNF YB/Cs was rich in elements that respond to various plant hormones, indicating their critical role in hormone pathways. The overexpression of PkLEC1 stimulated the generation of early somatic embryos from callus tissue with no potential for embryogenesis, enhancing the somatic embryogenesis ability of P. koraiensis callus tissue. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

18 pages, 5428 KiB  
Article
Phylogenetic and Expression Analysis of SBP-Box Gene Family to Enhance Environmental Resilience and Productivity in Camellia sinensis cv. Tie-guanyin
by Yusen Gao, Yingxin Wen, Qinmin Lin, Yizhuo Feng, Xinying Shi, Siyao Xiao, Elisabeth Tumukunde, Kehui Zheng and Shijiang Cao
Plants 2025, 14(3), 422; https://doi.org/10.3390/plants14030422 - 1 Feb 2025
Viewed by 273
Abstract
Tieguanyin tea, a renowned oolong tea, is one of the ten most famous teas in China. The Squamosa Promoter Binding Protein (SBP)-box transcription factor family, widely present in plants, plays a crucial role in plant development, growth, and stress responses. In this study, [...] Read more.
Tieguanyin tea, a renowned oolong tea, is one of the ten most famous teas in China. The Squamosa Promoter Binding Protein (SBP)-box transcription factor family, widely present in plants, plays a crucial role in plant development, growth, and stress responses. In this study, we identify and analyze 22 CsSBP genes at the genome-wide level. These genes were distributed unevenly across 11 chromosomes. Using Arabidopsis thaliana and Solanum lycopersicum L. as model organisms, we constructed a phylogenetic tree to classify these genes into six distinct subfamilies. Collinearity analysis revealed 20 homologous gene pairs between AtSBP and CsSBP, 21 pairs between SiSBP and CsSBP, and 14 pairs between OsSBP and CsSBP. Cis-acting element analysis indicated that light-responsive elements were the most abundant among the CsSBP genes. Protein motif, domain, and gene architecture analyses demonstrated that members of the same subgroup shared similar exon–intron structures and motif arrangements. Furthermore, we evaluated the expression profiles of nine CsSBP genes under light, shade, and cold stress using qRT-PCR analysis. Notably, CsSBP1, CsSBP17, and CsSBP19 were significantly upregulated under all three stresses. This study provides fundamental insights into the CsSBP gene family and offers a novel perspective on the mechanisms of SBP transcription factor-mediated stress responses, as well as Tieguanyin tea’s adaptation to environmental variations. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

20 pages, 6952 KiB  
Article
Genetic Diversity Analysis and Polyploid Induction Identification of Idesia polycarpa
by Xiaomei Luo, Yunke Liu, Yuting Lei, Zhoujian He, Xiao Gong, Meng Ye and Qiangang Xiao
Plants 2024, 13(23), 3394; https://doi.org/10.3390/plants13233394 - 3 Dec 2024
Viewed by 815
Abstract
Idesia polycarpa from Sichuan is a valuable germplasm with high economic potential, but it faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a promising parent due to its high oil content (38.5%) and red fruits. Polyploid [...] Read more.
Idesia polycarpa from Sichuan is a valuable germplasm with high economic potential, but it faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a promising parent due to its high oil content (38.5%) and red fruits. Polyploid induction via adding 0.50% colchicine to Murashige and Skoog (MS) medium yielded 520 IpHT1 mutagenized seedlings. Subsequently, flow cytometry (FCM) was performed on 401 morphologically variant seedlings which had been initially screened, resulting in the identification of 15 suspected triploids, 35 suspected tetraploids, and 3 chimeras. Furthermore, fluorescence in situ hybridization (FISH) analysis found that the probe (AG3T3)3 had terminal signals at both ends of each chromosome, allowing for the counting of 42 chromosomes in diploids and 84 in tetraploids. The probe 5S rDNA showed 2, 3, and 4 hybridization signals in the interphase nuclei of diploid, triploid, and tetraploid cells, respectively, but the probe (GAA)6 failed to produce any signal on I. polycarpa chromosomes. Ultimately, 18 polyploids were selected, including 7 triploids and 11 tetraploids. Triploids and tetraploids showed significant leaf morphological and physiological differences from diploids. Consequently, this study successfully established a polyploid breeding system for I. polycarpa, thereby enhancing its genetic diversity and breeding potential. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

10 pages, 2597 KiB  
Communication
Screening and Functional Evaluation of Four Larix kaempferi Promoters
by Chen-Yi Zhang, Zha-Long Ye, Li-Wang Qi, Ling Yang and Wan-Feng Li
Plants 2024, 13(19), 2777; https://doi.org/10.3390/plants13192777 - 3 Oct 2024
Viewed by 1197
Abstract
Promoters are powerful tools for breeding new varieties using transgenic technology. However, the low and unstable expression of target genes is still a limiting factor in Larix kaempferi (Lamb.) Carr (Japanese larch) genetic transformation. In this study, we analyzed L. kaempferi transcriptome data, [...] Read more.
Promoters are powerful tools for breeding new varieties using transgenic technology. However, the low and unstable expression of target genes is still a limiting factor in Larix kaempferi (Lamb.) Carr (Japanese larch) genetic transformation. In this study, we analyzed L. kaempferi transcriptome data, screened out highly expressed genes, cloned their promoters, and constructed plant expression vectors containing the β-glucuronidase (GUS) reporter gene driven by these promoters. Recombinant vectors were introduced into the L. kaempferi embryogenic callus by means of the Agrobacterium-mediated transient or stable genetic transformation method, and the promoter activity was then determined by measuring GUS expression and its enzyme activity in the transformed materials. Four highly expressed genes were identified: L. kaempferi Zhang Chen Yi-1 (LaZCY-1), Zhang Chen Yi-2 (LaZCY-2), Translationally Controlled Tumor Protein (LaTCTP), and ubiquitin (LaUBQ). The 2000 bp fragments upstream of ATG in these sequences were cloned as promoters and named pLaZCY-1, pLaZCY-2, pLaTCTP, and pLaUBQ. Semi-quantitative and quantitative RT-PCR analyses of transient genetic transformation materials showed that all four promoters could drive GUS expression, indicating that they have promoter activities. Semi-quantitative and quantitative RT-PCR analyses and the histochemical staining of stable genetic transformation materials showed that the pLaUBQ promoter had higher activity than the other three L. kaempferi promoters and the CaMV35S promoter. Thus, the pLaUBQ promoter was suggested to be used in larch genetic transformation. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

16 pages, 2294 KiB  
Article
Economic Evaluation of Conservation through Use of an Araucaria angustifolia Provenance and Progeny Test
by José Arimatéia Rabelo Machado, Miguel Luiz Menezes Freitas, Daniela Ivana Paiva, Bruno Marchetti de Souza, Valderês Aparecida De Sousa, Karina Martins, Edilson Batista Oliveira and Ananda Virginia De Aguiar
Plants 2024, 13(18), 2580; https://doi.org/10.3390/plants13182580 - 14 Sep 2024
Cited by 1 | Viewed by 688
Abstract
Araucaria angustifolia is a species known for its valuable wood and nuts, but it is threatened with extinction. The plantation of forests for genetic resource conservation is a complementary strategy designed to reduce the species’ genetic variability loss. This study aimed to evaluate [...] Read more.
Araucaria angustifolia is a species known for its valuable wood and nuts, but it is threatened with extinction. The plantation of forests for genetic resource conservation is a complementary strategy designed to reduce the species’ genetic variability loss. This study aimed to evaluate the technical and economic viability of A. angustifolia for genetic conservation through use. The analyzed provenance and progeny trial was established in 1982 in Itapeva, Brazil. It was structured using a compact family blocks design with 110 open-pollinated progenies from five natural populations, three replicates, ten plants per subplot, and 3.0 m × 2.0 m spacing. After 33 years, the trial was evaluated for total height, diameter at breast height, wood volume, and survival. The variance components and genetic parameter estimates were performed using Restricted Maximum Likelihood/Best Linear Unbiased Prediction methods (REML/BLUP) methods with the Selegen software (version 2014). The production and management scenarios were obtained using the SisAraucaria software (version 2003). Sensitivity analysis and economic parameter estimates were obtained through various economic evaluation methods using the Planin software (version 1995). In general, the genetic parameters indicated that the population has enough variability for both conservation and breeding purposes, suggesting technical viability for the establishment of a seed orchard. The economic parameters indicated that the commercialization of wood and araucaria nuts proved to be more profitable than wood production by itself. In conclusion, araucaria genetic conservation through use is a technically and economically viable ex situ conservation strategy. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

Back to TopTop