Development of System to Conventional and QTL Breeding for Rice Cultivars

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Molecular Biology".

Deadline for manuscript submissions: closed (28 February 2022) | Viewed by 10948

Special Issue Editors


E-Mail Website
Guest Editor
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
Interests: abiotic stress; antioxidant; genome editing; melatonin; plant factory; rice; space
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
Interests: QTL analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Rice breeding is not only important in its value as a food source, but also because of its ability to help address the second goal of the UN Sustainable Development Goals (SDGs) set in 2014—'resolve hunger, achieve food security and develop sustainable agriculture' Rice has excellent nutritional, health, and functional value. For safe food production, we are actively developing new varieties including traditional breeding technology and QTL technology adapted to climate. This Special Issue of Plants highlights the role of traditional breeding techniques, genetic mapping techniques, and QTL techniques in the interaction of genes with the environment.

Prof. Dr. Kyung–Min Kim
Dr. Gang-Seob Lee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • QTL
  • rice
  • cross breeding
  • genetic map
  • traditional breeding
  • genetic map

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 2923 KiB  
Article
Novel QTL Associated with Aerenchyma-Mediated Radial Oxygen Loss (ROL) in Rice (Oryza sativa L.) under Iron (II) Sulfide
by Dang Van Duyen, Youngho Kwon, Nkulu Rolly Kabange, Ji-Yoon Lee, So-Myeong Lee, Ju-Won Kang, Hyeonjin Park, Jin-Kyung Cha, Jun-Hyeon Cho, Dongjin Shin and Jong-Hee Lee
Plants 2022, 11(6), 788; https://doi.org/10.3390/plants11060788 - 16 Mar 2022
Cited by 5 | Viewed by 2992
Abstract
In rice, high radial oxygen loss (ROL) has been associated with the reduction in the activity of methanogens, therefore reducing the formation of methane (CH4) due to the abundance in application of nitrogen (N)-rich fertilizers. In this study, we evaluated the [...] Read more.
In rice, high radial oxygen loss (ROL) has been associated with the reduction in the activity of methanogens, therefore reducing the formation of methane (CH4) due to the abundance in application of nitrogen (N)-rich fertilizers. In this study, we evaluated the root growth behavior and ROL rate of a doubled haploid (DH) population (n = 117) and parental lines 93-11 (P1, indica) and Milyang352 (P2, japonica) in response to iron (II) sulfide (FeS). In addition, we performed a linkage mapping and quantitative trait locus (QTL) analysis on the same population for the target traits. The results of the phenotypic evaluation revealed that parental lines had distinctive root growth and ROL patterns, with 93-11 (indica) and Milyang352 (japonica) showing low and high ROL rates, respectively. This was also reflected in their derived population, indicating that 93.2% of the DH lines exhibited a high ROL rate and about 6.8% had a low ROL pattern. Furthermore, the QTL and linkage map analysis detected two QTLs associated with the control of ROL and root area on chromosomes 2 (qROL-2-1, 127 cM, logarithm of the odds (LOD) 3.04, phenotypic variation explained (PVE) 11.61%) and 8 (qRA-8-1, 97 cM, LOD 4.394, PVE 15.95%), respectively. The positive additive effect (2.532) of qROL-2-1 indicates that the allele from 93-11 contributed to the observed phenotypic variation for ROL. The breakthrough is that the qROL-2-1 harbors genes proposed to be involved in stress signaling, defense response mechanisms, and transcriptional regulation, among others. The qPCR results revealed that the majority of genes harbored by the qROL-2-1 recorded a higher transcript accumulation level in Milyang352 over time compared to 93-11. Another set of genes exhibited a high transcript abundance in P1 compared to P2, while a few were differentially regulated between both parents. Therefore, OsTCP7 and OsMYB21, OsARF8 genes encoding transcription factors (TFs), coupled with OsTRX, OsWBC8, and OsLRR2 are suggested to play important roles in the positive regulation of ROL in rice. However, the recorded differential expression of OsDEF7 and OsEXPA, and the decrease in OsNIP2, Oscb5, and OsPLIM2a TF expression between parental lines proposes them as being involved in the control of oxygen flux level in rice roots. Full article
Show Figures

Figure 1

16 pages, 3934 KiB  
Article
Identification of One Major QTL and a Novel Gene OsIAA17q5 Associated with Tiller Number in Rice Using QTL Analysis
by Dan-Dan Zhao, Jae-Ryoung Park, Yoon-Hee Jang, Eun-Gyeong Kim, Xiao-Xuan Du, Muhammad Farooq, Byoung-Ju Yun and Kyung-Min Kim
Plants 2022, 11(4), 538; https://doi.org/10.3390/plants11040538 - 17 Feb 2022
Cited by 14 | Viewed by 5092
Abstract
Rice tillers are one of the most important traits for the yield and development of rice, although little is known about its mode of inheritance. Tiller numbers were recorded every 7 days a total of nine times, starting 30 days after transplantation. Quantitative [...] Read more.
Rice tillers are one of the most important traits for the yield and development of rice, although little is known about its mode of inheritance. Tiller numbers were recorded every 7 days a total of nine times, starting 30 days after transplantation. Quantitative trait locus (QTL) based analysis on a set of double haploid population derivatives of a cross between the Cheongcheong and Nagdong varieties identified a major effect of locus RM18130–RM3381 on chromosome 5, which was expressed in eight different growth stages. Within the target region RM18130–RM3381 (physical distance: 2.08 Mb), 61 candidate genes were screened by annotation. Among the candidate genes, Os05g0230700 (named OsIAA17q5), which belongs to the family of auxin-responsive genes, was selected as a target. Auxin promotes cell division and meristem maintenance and is an effective plant regulator which influences plant growth and development by altering the expression of various genes. OsIAA17q5 is expected to control the number of tillers. The present study provides further understanding of the basic genetic mechanisms that selectively express the control of tiller numbers in different growth stages, as well as provides valuable information for future research aimed at cloning the target gene. These results may contribute to developing a comprehensive understanding of the basic genetic processes regulating the developmental behavior of tiller numbers in rice. Full article
Show Figures

Figure 1

14 pages, 1250 KiB  
Article
Developing Novel Rice Genotypes Harboring Specific QTL Alleles Associated with High Grain Yield under Water Shortage Stress
by Mohamed Abdelrahman, Mahmoud E. Selim, Mahmoud A. ElSayed, Megahed H. Ammar, Fatma A. Hussein, Neama K. ElKholy, Essam A. ElShamey, Naeem Khan and Kotb A. Attia
Plants 2021, 10(10), 2219; https://doi.org/10.3390/plants10102219 - 19 Oct 2021
Cited by 5 | Viewed by 2216
Abstract
Rice is considered a strategic crop for many countries around the world, being the main cash crop for farmers. Water shortage stress occurrence as a result of climate change is among the main threats challenging rice breeders in the last few decades. In [...] Read more.
Rice is considered a strategic crop for many countries around the world, being the main cash crop for farmers. Water shortage stress occurrence as a result of climate change is among the main threats challenging rice breeders in the last few decades. In the current study, 19 Fn-lines were developed from four populations by crossing a reverse thermo-responsive genic male sterile (rTGMS) line, M.J.5460S, with the three high-quality Egyptian commercial cultivars Giza177, Sakha105, Sakha106 and the promising line GZ7768 as male parents. These newly developed lines, along with their parents, and two water shortage stress-tolerant international genotypes (Azucena and IRAT170), were cultivated under water-shortage stress conditions and compared with their performance under well-watered conditions. Results indicated that the yielding ability of the 19 newly developed lines exceeded those for the two Egyptian parents (Giza177 and Sakha105) under well-watered conditions. The lines M.J5460S/GIZA177-3 and M.J5460S/GIZA177-12 were the best performing genotypes under water shortage stress conditions. The genetic and heritability in broad sense estimates indicated that direct selection for grain yield (GY) under water-shortage stress is highly effective in the current study. Molecular marker analysis revealed that M.J5460S/GIZA177-3 had accumulated the quantitative trait loci (QTL)s, on the chromosomes 2, 3, and 9, which contribute to GY under water-shortage stress from their high yielding tolerant ancestor, M.J5460S. It could be concluded that those lines are high yielding under both well-watered and water-stress conditions harboring several QTLs for yield enhancement under both conditions and that the markers RM555, RM14551, RM3199, RM257, RM242, and RM410 are among the markers that could be used in marker-assisted selection (MAS) breeding programs for such stress condition. Full article
Show Figures

Figure 1

Back to TopTop