Oxidative Stress and Antioxidant Strategies: Relationships and Cellular Pathways for Human Health

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cellular Pathology".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 25415

Special Issue Editors

Special Issue Information

Dear Colleagues,

Among the key factors influencing human health are chronic diseases and aging, which have been increasing in recent decades. These pathological states are produced by several causes, and a common factor involved in most of them is oxidative stress. Oxidative stress is defined as an imbalance between oxidative status, mainly by the formation of reactive species (RS), and antioxidant defense mechanisms. Nevertheless, when oxidants are produced in excess, or when the antioxidant defenses that regulate them are ineffective, this balance can be perturbed, thus resulting in oxidative conditions. Oxidative products are highly reactive, and can directly or indirectly modulate the functions of many enzymes and transcription factors through a complex signaling cascade. This phenomenon increases with age and affects the normal functioning of several cells and tissues. Due to the broad and profound biological effects of RS, numerous experimental and clinical studies have focused their attention on the participation of oxidative stress as a key regulator in chronic pathological status and aging. This Special Issue will focus on the investigation of the molecular mechanisms underlying oxidative stress, and pathophysiological consequences in cell and tissue function, in order to open new avenues in therapy, and drug design (natural or synthetic). It welcomes manuscripts collecting and contributing to the dissemination of high quality research articles, as well as review articles, focusing on the relationship between oxidative stress and cellular responses in chronic diseases and aging. In addition, molecular targets of cellular membranes, as well as their potential modulation under oxidative stress will be also considered, in an attempt to provide more information about cell response to oxidative stress and its possible modulation by novel pharmacological strategies. Studies using animal or cell models, as well as clinical studies are welcomed. 

Dr. Alessia Remigante
Prof. Dr. Rossana Morabito
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oxidative stress
  • antioxidants
  • aging
  • human health and diseases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

5 pages, 189 KiB  
Editorial
Oxidative Stress and Antioxidant Strategies: Relationships and Cellular Pathways for Human Health
by Alessia Remigante and Rossana Morabito
Cells 2024, 13(22), 1871; https://doi.org/10.3390/cells13221871 - 11 Nov 2024
Viewed by 417
Abstract
Chronic diseases and aging have increased significantly in recent decades [...] Full article

Research

Jump to: Editorial, Review

19 pages, 4317 KiB  
Article
Chlorine-Induced Toxicity on Murine Cornea: Exploring the Potential Therapeutic Role of Antioxidants
by Seungwon An, Khandaker Anwar, Mohammadjavad Ashraf, Kyu-Yeon Han and Ali R. Djalilian
Cells 2024, 13(5), 458; https://doi.org/10.3390/cells13050458 - 5 Mar 2024
Cited by 1 | Viewed by 1534
Abstract
Chlorine (Cl2) exposure poses a significant risk to ocular health, with the cornea being particularly susceptible to its corrosive effects. Antioxidants, known for their ability to neutralize reactive oxygen species (ROS) and alleviate oxidative stress, were explored as potential therapeutic agents [...] Read more.
Chlorine (Cl2) exposure poses a significant risk to ocular health, with the cornea being particularly susceptible to its corrosive effects. Antioxidants, known for their ability to neutralize reactive oxygen species (ROS) and alleviate oxidative stress, were explored as potential therapeutic agents to counteract chlorine-induced damage. In vitro experiments using human corneal epithelial cells showed decreased cell viability by chlorine-induced ROS production, which was reversed by antioxidant incubation. The mitochondrial membrane potential decreased due to both low and high doses of Cl2 exposure; however, it was recovered through antioxidants. The wound scratch assay showed that antioxidants mitigated impaired wound healing after Cl2 exposure. In vivo and ex vivo, after Cl2 exposure, increased corneal fluorescein staining indicates damaged corneal epithelial and stromal layers of mice cornea. Likewise, Cl2 exposure in human ex vivo corneas led to corneal injury characterized by epithelial fluorescein staining and epithelial erosion. However, antioxidants protected Cl2-induced damage. These results highlight the effects of Cl2 on corneal cells using in vitro, ex vivo, and in vivo models while also underscoring the potential of antioxidants, such as vitamin A, vitamin C, resveratrol, and melatonin, as protective agents against acute chlorine toxicity-induced corneal injury. Further investigation is needed to confirm the antioxidants’ capacity to alleviate oxidative stress and enhance the corneal healing process. Full article
Show Figures

Figure 1

18 pages, 2693 KiB  
Article
Allyl Isothiocianate Induces Ca2+ Signals and Nitric Oxide Release by Inducing Reactive Oxygen Species Production in the Human Cerebrovascular Endothelial Cell Line hCMEC/D3
by Roberto Berra-Romani, Valentina Brunetti, Giorgia Pellavio, Teresa Soda, Umberto Laforenza, Giorgia Scarpellino and Francesco Moccia
Cells 2023, 12(13), 1732; https://doi.org/10.3390/cells12131732 - 27 Jun 2023
Cited by 8 | Viewed by 1807
Abstract
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca2+ concentrations ([Ca2+]i) stimulates the endothelial NO [...] Read more.
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca2+ concentrations ([Ca2+]i) stimulates the endothelial NO synthase to produce NO in human cerebrovascular endothelial cells. Therefore, targeting the endothelial ion channel machinery could represent a promising strategy to rescue endothelial NO signalling in traumatic brain injury and neurodegenerative disorders. Allyl isothiocyanate (AITC), a major active constituent of cruciferous vegetables, was found to increase CBF in non-human preclinical models, but it is still unknown whether it stimulates NO release in human brain capillary endothelial cells. In the present investigation, we showed that AITC evoked a Ca2+-dependent NO release in the human cerebrovascular endothelial cell line, hCMEC/D3. The Ca2+ response to AITC was shaped by both intra- and extracellular Ca2+ sources, although it was insensitive to the pharmacological blockade of transient receptor potential ankyrin 1, which is regarded to be among the main molecular targets of AITC. In accord, AITC failed to induce transmembrane currents or to elicit membrane hyperpolarization, although NS309, a selective opener of the small- and intermediate-conductance Ca2+-activated K+ channels, induced a significant membrane hyperpolarization. The AITC-evoked Ca2+ signal was triggered by the production of cytosolic, but not mitochondrial, reactive oxygen species (ROS), and was supported by store-operated Ca2+ entry (SOCE). Conversely, the Ca2+ response to AITC did not require Ca2+ mobilization from the endoplasmic reticulum, lysosomes or mitochondria. However, pharmacological manipulation revealed that AITC-dependent ROS generation inhibited plasma membrane Ca2+-ATPase (PMCA) activity, thereby attenuating Ca2+ removal across the plasma membrane and resulting in a sustained increase in [Ca2+]i. In accord, the AITC-evoked NO release was driven by ROS generation and required ROS-dependent inhibition of PMCA activity. These data suggest that AITC could be exploited to restore NO signalling and restore CBF in brain disorders that feature neurovascular dysfunction. Full article
Show Figures

Graphical abstract

25 pages, 3628 KiB  
Article
Palmitate-Induced Cardiac Lipotoxicity Is Relieved by the Redox-Active Motif of SELENOT through Improving Mitochondrial Function and Regulating Metabolic State
by Carmine Rocca, Anna De Bartolo, Rita Guzzi, Maria Caterina Crocco, Vittoria Rago, Naomi Romeo, Ida Perrotta, Ernestina Marianna De Francesco, Maria Grazia Muoio, Maria Concetta Granieri, Teresa Pasqua, Rosa Mazza, Loubna Boukhzar, Benjamin Lefranc, Jérôme Leprince, Maria Eugenia Gallo Cantafio, Teresa Soda, Nicola Amodio, Youssef Anouar and Tommaso Angelone
Cells 2023, 12(7), 1042; https://doi.org/10.3390/cells12071042 - 29 Mar 2023
Cited by 6 | Viewed by 3411
Abstract
Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), [...] Read more.
Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity. Full article
Show Figures

Figure 1

19 pages, 2013 KiB  
Article
Mercury Chloride Affects Band 3 Protein-Mediated Anionic Transport in Red Blood Cells: Role of Oxidative Stress and Protective Effect of Olive Oil Polyphenols
by Pasquale Perrone, Sara Spinelli, Gianluca Mantegna, Rosaria Notariale, Elisabetta Straface, Daniele Caruso, Giuseppe Falliti, Angela Marino, Caterina Manna, Alessia Remigante and Rossana Morabito
Cells 2023, 12(3), 424; https://doi.org/10.3390/cells12030424 - 27 Jan 2023
Cited by 17 | Viewed by 2284
Abstract
Mercury is a toxic heavy metal widely dispersed in the natural environment. Mercury exposure induces an increase in oxidative stress in red blood cells (RBCs) through the production of reactive species and alteration of the endogenous antioxidant defense system. Recently, among various natural [...] Read more.
Mercury is a toxic heavy metal widely dispersed in the natural environment. Mercury exposure induces an increase in oxidative stress in red blood cells (RBCs) through the production of reactive species and alteration of the endogenous antioxidant defense system. Recently, among various natural antioxidants, the polyphenols from extra-virgin olive oil (EVOO), an important element of the Mediterranean diet, have generated growing interest. Here, we examined the potential protective effects of hydroxytyrosol (HT) and/or homovanillyl alcohol (HVA) on an oxidative stress model represented by human RBCs treated with HgCl2 (10 µM, 4 h of incubation). Morphological changes as well as markers of oxidative stress, including thiobarbituric acid reactive substance (TBARS) levels, the oxidation of protein sulfhydryl (-SH) groups, methemoglobin formation (% MetHb), apoptotic cells, a reduced glutathione/oxidized glutathione ratio, Band 3 protein (B3p) content, and anion exchange capability through B3p were analyzed in RBCs treated with HgCl2 with or without 10 μM HT and/or HVA pre-treatment for 15 min. Our data show that 10 µM HT and/or HVA pre-incubation impaired both acanthocytes formation, due to 10 µM HgCl2, and mercury-induced oxidative stress injury and, moreover, restored the endogenous antioxidant system. Interestingly, HgCl2 treatment was associated with a decrease in the rate constant for SO42− uptake through B3p as well as MetHb formation. Both alterations were attenuated by pre-treatment with HT and/or HVA. These findings provide mechanistic insights into benefits deriving from the use of naturally occurring polyphenols against oxidative stress induced by HgCl2 on RBCs. Thus, dietary supplementation with polyphenols might be useful in populations exposed to HgCl2 poisoning. Full article
Show Figures

Graphical abstract

17 pages, 4063 KiB  
Article
Fresh Medium or L-Cystine as an Effective Nrf2 Inducer for Cytoprotection in Cell Culture
by Wujing Dai and Qin M. Chen
Cells 2023, 12(2), 291; https://doi.org/10.3390/cells12020291 - 12 Jan 2023
Cited by 3 | Viewed by 2615
Abstract
The Nrf2 gene encodes a transcription factor best known for regulating the expression of antioxidant and detoxification genes. A long list of small molecules has been reported to induce Nrf2 protein via Keap1 oxidation or alkylation. Many of these Nrf2 inducers exhibit off-target [...] Read more.
The Nrf2 gene encodes a transcription factor best known for regulating the expression of antioxidant and detoxification genes. A long list of small molecules has been reported to induce Nrf2 protein via Keap1 oxidation or alkylation. Many of these Nrf2 inducers exhibit off-target or toxic effects due to their nature as electrophiles. In searching for non-toxic Nrf2 inducers, we found that a culture medium change to fresh DMEM is capable of inducing Nrf2 protein in HeLa, HEK293, AC16 and MCF7 cells. Testing the components of DMEM led to the discovery of L-Cystine as an effective Nrf2 inducer. L-Cystine induces a dose-dependent increase of Nrf2 protein, from 0.1 to 1.6 mM. RNA-seq analyses and RT-PCR revealed an induction of multiple Nrf2 downstream genes, including NQO1, HMOX1, GCLC, GCLM, SRXN1, TXNRD1, AKR1C and OSGIN1 by 0.8 mM L-Cystine. The induction of Nrf2 protein was dependent on L-Cystine entering cells via the cystine/glutamate antiporter and the presence of Keap1. The half-life of Nrf2 protein increased from 19.4 min to 30.9 min with 0.8 mM L-Cystine treatment. L-Cystine was capable of eliciting cytoprotection by reducing ROS generation and protecting against oxidant- or doxorubicin-induced apoptosis. As an amino acid derivative, L-Cystine is considered a non-toxic Nrf2 inducer that exhibits the potential for protection against oxidative stress and tissue injury. Full article
Show Figures

Graphical abstract

10 pages, 948 KiB  
Article
Evaluation of Malondialdehyde Levels, Oxidative Stress and Host–Bacteria Interactions: Escherichia coli and Salmonella Derby
by Vardan Tsaturyan, Armen Poghosyan, Michał Toczyłowski and Astghik Pepoyan
Cells 2022, 11(19), 2989; https://doi.org/10.3390/cells11192989 - 26 Sep 2022
Cited by 19 | Viewed by 2782
Abstract
Either extracts, cell-free suspensions or bacterial suspensions are used to study bacterial lipid peroxidation processes. Along with gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and several other strategies, the thiobarbituric acid test is used for the determination of malondialdehyde (MDA) as the basis for [...] Read more.
Either extracts, cell-free suspensions or bacterial suspensions are used to study bacterial lipid peroxidation processes. Along with gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and several other strategies, the thiobarbituric acid test is used for the determination of malondialdehyde (MDA) as the basis for the commercial test kits and the colorimetric detection of lipid peroxidation. The aim of the current study was to evaluate lipid peroxidation processes levels in the suspensions, extracts and culture supernatants of Escherichia coli and Salmonella Derby strains. The dependence of the formation of thiobarbituric acid-reactive substances levels in the cell extracts, the suspensions and cell-free supernatants on bacterial species, and their concentration and growth phase were revealed. The effect of bacterial concentrations on MDA formation was also found to be more pronounced in bacterial suspensions than in extracts, probably due to the dynamics of MDA release into the intercellular space. This study highlights the possible importance of MDA determination in both cell-free suspensions and extracts, as well as in bacterial suspensions to elucidate the role of lipid peroxidation processes in bacterial physiology, bacteria–host interactions, as well as in host physiology. Full article
Show Figures

Figure 1

20 pages, 8466 KiB  
Article
Açai Berry Mitigates Vascular Dementia-Induced Neuropathological Alterations Modulating Nrf-2/Beclin1 Pathways
by Daniela Impellizzeri, Ramona D’Amico, Roberta Fusco, Tiziana Genovese, Alessio Filippo Peritore, Enrico Gugliandolo, Rosalia Crupi, Livia Interdonato, Davide Di Paola, Rosanna Di Paola, Salvatore Cuzzocrea, Rosalba Siracusa and Marika Cordaro
Cells 2022, 11(16), 2616; https://doi.org/10.3390/cells11162616 - 22 Aug 2022
Cited by 22 | Viewed by 3439
Abstract
The second-most common cause of dementia is vascular dementia (VaD). The majority of VaD patients experience cognitive impairment, which is brought on by oxidative stress and changes in autophagic function, which ultimately result in neuronal impairment and death. In this study, we examine [...] Read more.
The second-most common cause of dementia is vascular dementia (VaD). The majority of VaD patients experience cognitive impairment, which is brought on by oxidative stress and changes in autophagic function, which ultimately result in neuronal impairment and death. In this study, we examine a novel method for reversing VaD-induced changes brought on by açai berry supplementation in a VaD mouse model. The purpose of this study was to examine the impact of açai berries on the molecular mechanisms underlying VaD in a mouse model of the disease that was created by repeated ischemia–reperfusion (IR) of the whole bilateral carotid artery. Here, we found that açai berry was able to reduce VaD-induced behavioral alteration, as well as hippocampal death, in CA1 and CA3 regions. These effects are probably due to the modulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and Beclin-1, suggesting a possible crosstalk between these molecular pathways. In conclusion, the protective effects of açai berry could be a good supplementation in the future for the management of vascular dementia. Full article
Show Figures

Figure 1

23 pages, 3566 KiB  
Article
Açaì (Euterpe oleracea) Extract Protects Human Erythrocytes from Age-Related Oxidative Stress
by Alessia Remigante, Sara Spinelli, Elisabetta Straface, Lucrezia Gambardella, Daniele Caruso, Giuseppe Falliti, Silvia Dossena, Angela Marino and Rossana Morabito
Cells 2022, 11(15), 2391; https://doi.org/10.3390/cells11152391 - 3 Aug 2022
Cited by 23 | Viewed by 2628
Abstract
Aging is a process characterised by a general decline in physiological functions. The high bioavailability of reactive oxygen species (ROS) plays an important role in the aging rate. Due to the close relationship between aging and oxidative stress (OS), functional foods rich in [...] Read more.
Aging is a process characterised by a general decline in physiological functions. The high bioavailability of reactive oxygen species (ROS) plays an important role in the aging rate. Due to the close relationship between aging and oxidative stress (OS), functional foods rich in flavonoids are excellent candidates to counteract age-related changes. This study aimed to verify the protective role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. Markers of OS, including ROS production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, as well as the anion exchange capability through Band 3 protein (B3p) and glycated haemoglobin (A1c) have been analysed in erythrocytes treated with d-Gal for 24 h, with or without pre-incubation for 1 h with 0.5–10 µg/mL Açaì extract. Our results show that the extract avoided the formation of acanthocytes and leptocytes observed after exposure to 50 and 100 mM d-Gal, respectively, prevented d-Gal-induced OS damage, and restored alterations in the distribution of B3p and CD47 proteins. Interestingly, d-Gal exposure was associated with an acceleration of the rate constant of SO42− uptake through B3p, as well as A1c formation. Both alterations have been attenuated by pre-treatment with the Açaì extract. These findings contribute to clarify the aging mechanisms in human erythrocytes and propose functional foods rich in flavonoids as natural antioxidants for the treatment and prevention of OS-related disease conditions. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

21 pages, 2025 KiB  
Review
Transient Receptor Potential Ankyrin 1 (TRPA1) Channel as a Sensor of Oxidative Stress in Cancer Cells
by Francesco Moccia and Daniela Montagna
Cells 2023, 12(9), 1261; https://doi.org/10.3390/cells12091261 - 26 Apr 2023
Cited by 8 | Viewed by 3019
Abstract
Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In [...] Read more.
Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In order to cope with the oxidative stress imposed by the tumor microenvironment, malignant cells exploit a sophisticated network of antioxidant defense mechanisms. Targeting the antioxidant capacity of cancer cells or enhancing their sensitivity to ROS-dependent cell death represent a promising strategy for alternative anticancer treatments. Transient Receptor Potential Ankyrin 1 (TRPA1) is a redox-sensitive non-selective cation channel that mediates extracellular Ca2+ entry upon an increase in intracellular ROS levels. The ensuing increase in intracellular Ca2+ concentration can in turn engage a non-canonical antioxidant defense program or induce mitochondrial Ca2+ dysfunction and apoptotic cell death depending on the cancer type. Herein, we sought to describe the opposing effects of ROS-dependent TRPA1 activation on cancer cell fate and propose the pharmacological manipulation of TRPA1 as an alternative therapeutic strategy to enhance cancer cell sensitivity to oxidative stress. Full article
Show Figures

Figure 1

Back to TopTop