ijms-logo

Journal Browser

Journal Browser

Neuroinfectiology: Molecular and Cellular Mechanisms of Neurotropic Virus Infection

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (15 December 2018) | Viewed by 40735

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
Interests: viral pathogenesis; host range; virus-host cell-tropism and interactions;, virus discovery; models for multiple sclerosis; intervention strategies; neuroinfectiology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, reported cases of viral pathogens causing infection of the central nervous system (CNS) as emerging and re-emerging diseases have been increasingly, particularly noticed in humans and animals. Some viruses will infect only the CNS, others cause systemic spread and affection of the nervous systems and is noticed in a small percentage of individuals. Still, a substantial number of possible viral CNS diseases remain etiologically-undetermined so far. The burden of infectious CNS diseases is reinforced by the fact that survivors may suffer from life-long lasting neurological and psychiatric complications. A sensu stricto definition of neuroinfectiology would refer to a direct pathogen–host cell effect, resulting in cytolysis and inflammation. However, cellular functions may remain impaired despite cell survival especially in the CNS. Such an impaired organ function may be due to a derailment of immune responses, epitope spreading and molecular mimicry, even after elimination of the causing viral pathogen. Similarly, predisposing factors including concurrent diseases, immune deficiencies may increase the susceptibility for viral infection. Therefore, a broader definition of neuroinfectiology should include predisposing mechanisms, acute host–pathogen interactions, as well as long-term, delayed disturbances and disabilities.

Mechanisms that govern neuropathogenesis of viral infections will be highlighted in this Special Issue, entitled “Neuroinfectiology: Molecular and Cellular Mechanisms of Neurotropic Virus Infection”.

Prof. Dr. Wolfgang Baumgärtner
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neuroinfection
  • acute neuropathogenesis
  • long-term pathogenesis
  • neurotoxicity
  • host-glial cell interactions
  • virus discover
  • host range
  • transmission
  • neuro-immunopathology
  • viral persistence
  • demyelination
  • axonopathy
  • delayed neurological symptoms
  • neurocognitive disorders
  • intervention strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

29 pages, 17237 KiB  
Article
Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis
by Friederike Attig, Ingo Spitzbarth, Arno Kalkuhl, Ulrich Deschl, Christina Puff, Wolfgang Baumgärtner and Reiner Ulrich
Int. J. Mol. Sci. 2019, 20(13), 3217; https://doi.org/10.3390/ijms20133217 - 30 Jun 2019
Cited by 10 | Viewed by 3608
Abstract
(1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to [...] Read more.
(1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key effector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest differences in the pathogenesis of demyelination in these two animal models. Full article
Show Figures

Figure 1

14 pages, 5051 KiB  
Article
Delayed Astrogliosis Associated with Reduced M1 Microglia Activation in Matrix Metalloproteinase 12 Knockout Mice during Theiler’s Murine Encephalomyelitis
by Florian Hansmann, Ning Zhang, Vanessa Herder, Eva Leitzen and Wolfgang Baumgärtner
Int. J. Mol. Sci. 2019, 20(7), 1702; https://doi.org/10.3390/ijms20071702 - 5 Apr 2019
Cited by 13 | Viewed by 3871
Abstract
Theiler’s murine encephalomyelitis (TME) represents a versatile animal model for studying the pathogenesis of demyelinating diseases such as multiple sclerosis. Hallmarks of TME are demyelination, astrogliosis, as well as inflammation. Previous studies showed that matrix metalloproteinase 12 knockout (Mmp12−/−) mice [...] Read more.
Theiler’s murine encephalomyelitis (TME) represents a versatile animal model for studying the pathogenesis of demyelinating diseases such as multiple sclerosis. Hallmarks of TME are demyelination, astrogliosis, as well as inflammation. Previous studies showed that matrix metalloproteinase 12 knockout (Mmp12−/−) mice display an ameliorated clinical course associated with reduced demyelination. The present study aims to elucidate the impact of MMP12 deficiency in TME with special emphasis on astrogliosis, macrophages infiltrating the central nervous system (CNS), and the phenotype of microglia/macrophages (M1 or M2). SJL wild-type and Mmp12−/− mice were infected with TME virus (TMEV) or vehicle (mock) and euthanized at 28 and 98 days post infection (dpi). Immunohistochemistry or immunofluorescence of cervical and thoracic spinal cord for detecting glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), chemokine receptor 2 (CCR2), CD107b, CD16/32, and arginase I was performed and quantitatively evaluated. Statistical analyses included the Kruskal–Wallis test followed by Mann–Whitney U post hoc tests. TMEV-infected Mmp12−/− mice showed transiently reduced astrogliosis in association with a strong trend (p = 0.051) for a reduced density of activated/reactive microglia/macrophages compared with wild-type mice at 28 dpi. As astrocytes are an important source of cytokine production, including proinflammatory cytokines triggering or activating phagocytes, the origin of intralesional microglia/macrophages as well as their phenotype were determined. Only few phagocytes in wild-type and Mmp12−/− mice expressed CCR2, indicating that the majority of phagocytes are represented by microglia. In parallel to the reduced density of activated/reactive microglia at 98 dpi, TMEV-infected Mmp12−/− showed a trend (p = 0.073) for a reduced density of M1 (CD16/32- and CD107b-positive) microglia, while no difference regarding the density of M2 (arginase I- and CD107b-positive) cells was observed. However, a dominance of M1 cells was detected in the spinal cord of TMEV-infected mice at all time points. Reduced astrogliosis in Mmp12−/− mice was associated with a reduced density of activated/reactive microglia and a trend for a reduced density of M1 cells. This indicates that MMP12 plays an important role in microglia activation, polarization, and migration as well as astrogliosis and microglia/astrocyte interaction. Full article
Show Figures

Figure 1

22 pages, 5641 KiB  
Article
Interferon-Stimulated Genes—Mediators of the Innate Immune Response during Canine Distemper Virus Infection
by Daniela Klotz and Ingo Gerhauser
Int. J. Mol. Sci. 2019, 20(7), 1620; https://doi.org/10.3390/ijms20071620 - 1 Apr 2019
Cited by 16 | Viewed by 7237
Abstract
The demyelinating canine distemper virus (CDV)-leukoencephalitis represents a translational animal model for multiple sclerosis. The present study investigated the expression of type I interferon (IFN-I) pathway members in CDV-induced cerebellar lesions to gain an insight into their role in lesion development. Gene expression [...] Read more.
The demyelinating canine distemper virus (CDV)-leukoencephalitis represents a translational animal model for multiple sclerosis. The present study investigated the expression of type I interferon (IFN-I) pathway members in CDV-induced cerebellar lesions to gain an insight into their role in lesion development. Gene expression of 110 manually selected genes in acute, subacute and chronic lesions was analyzed using pre-existing microarray data. Interferon regulatory factor (IRF) 3, IRF7, signal transducer and activator of transcription (STAT) 1, STAT2, MX protein, protein kinase R (PKR), 2′-5′-oligoadenylate synthetase (OAS) 1 and interferon-stimulated gene (ISG) 15 expression were also evaluated using immunohistochemistry. Cellular origin of STAT1, STAT2, MX and PKR were determined using immunofluorescence. CDV infection caused an increased expression of the antiviral effector proteins MX, PKR, OAS1 and ISG15, which probably contributed to a restricted viral replication, particularly in neurons and oligodendrocytes. This increase might be partly mediated by IRF-dependent pathways due to the lack of changes in IFN-I levels and absence of STAT2 in astrocytes. Nevertheless, activated microglia/macrophages showed a strong expression of STAT1, STAT2 and MX proteins in later stages of the disease, indicating a strong activation of the IFN-I signaling cascade, which might be involved in the aggravation of bystander demyelination. Full article
Show Figures

Graphical abstract

19 pages, 3349 KiB  
Article
Intranasal Borna Disease Virus (BoDV-1) Infection: Insights into Initial Steps and Potential Contagiosity
by Alexandra Kupke, Sabrina Becker, Konstantin Wewetzer, Barbara Ahlemeyer, Markus Eickmann and Christiane Herden
Int. J. Mol. Sci. 2019, 20(6), 1318; https://doi.org/10.3390/ijms20061318 - 15 Mar 2019
Cited by 21 | Viewed by 4022
Abstract
Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory [...] Read more.
Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential. Full article
Show Figures

Figure 1

17 pages, 2657 KiB  
Article
Cryopreservation of Canine Primary Dorsal Root Ganglion Neurons and Its Impact upon Susceptibility to Paramyxovirus Infection
by Sarah Schwarz, Ingo Spitzbarth, Wolfgang Baumgärtner and Annika Lehmbecker
Int. J. Mol. Sci. 2019, 20(5), 1058; https://doi.org/10.3390/ijms20051058 - 28 Feb 2019
Cited by 6 | Viewed by 4495
Abstract
Canine dorsal root ganglion (DRG) neurons, isolated post mortem from adult dogs, could provide a promising tool to study neuropathogenesis of neurotropic virus infections with a non-rodent host spectrum. However, access to canine DRG is limited due to lack of donor tissue and [...] Read more.
Canine dorsal root ganglion (DRG) neurons, isolated post mortem from adult dogs, could provide a promising tool to study neuropathogenesis of neurotropic virus infections with a non-rodent host spectrum. However, access to canine DRG is limited due to lack of donor tissue and the cryopreservation of DRG neurons would greatly facilitate experiments. The present study aimed (i) to establish canine DRG neurons as an in vitro model for canine distemper virus (CDV) infection; and (ii) to determine whether DRG neurons are cryopreservable and remain infectable with CDV. Neurons were characterized morphologically and phenotypically by light microscopy, immunofluorescence, and functionally, by studying their neurite outgrowth and infectability with CDV. Cryopreserved canine DRG neurons remained in culture for at least 12 days. Furthermore, both non-cryopreserved and cryopreserved DRG neurons were susceptible to infection with two different strains of CDV, albeit only one of the two strains (CDV R252) provided sufficient absolute numbers of infected neurons. However, cryopreserved DRG neurons showed reduced cell yield, neurite outgrowth, neurite branching, and soma size and reduced susceptibility to CDV infection. In conclusion, canine primary DRG neurons represent a suitable tool for investigations upon the pathogenesis of neuronal CDV infection. Moreover, despite certain limitations, cryopreserved canine DRG neurons generally provide a useful and practicable alternative to address questions regarding virus tropism and neuropathogenesis. Full article
Show Figures

Figure 1

17 pages, 3624 KiB  
Article
Comparison of Reported Spinal Cord Lesions in Progressive Multiple Sclerosis with Theiler’s Murine Encephalomyelitis Virus Induced Demyelinating Disease
by Eva Leitzen, Wen Jin, Vanessa Herder, Andreas Beineke, Suliman Ahmed Elmarabet, Wolfgang Baumgärtner and Florian Hansmann
Int. J. Mol. Sci. 2019, 20(4), 989; https://doi.org/10.3390/ijms20040989 - 25 Feb 2019
Cited by 10 | Viewed by 4484
Abstract
Background: Spinal cord (SC) lesions in Theiler’s murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) resemble important features of brain lesions in progressive multiple sclerosis (MS) including inflammation, demyelination, and axonal damage. The aim of the present study was a comparison of SC lesions [...] Read more.
Background: Spinal cord (SC) lesions in Theiler’s murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) resemble important features of brain lesions in progressive multiple sclerosis (MS) including inflammation, demyelination, and axonal damage. The aim of the present study was a comparison of SC lesions in MS and TMEV-IDD focusing on spatial and temporal distribution of demyelination, inflammation, SC atrophy (SCA), and axonal degeneration/loss in major descending motor pathways. Methods: TMEV and mock-infected mice were investigated clinically once a week. SC tissue was collected at 42, 98, 147, and 196 days post infection, and investigated using hematoxylin and eosin (HE) staining, immunohistochemistry targeting myelin basic protein (demyelination), Mac3 (microglia/macrophages), phosphorylated neurofilaments (axonal damage) and transmission electron microscopy. Results: Demyelination prevailed in SC white matter in TMEV-IDD, contrasting a predominant gray matter involvement in MS. TMEV-infected mice revealed a significant loss of axons similar to MS. Ultrastructural analysis in TMEV-IDD revealed denuded axons, degenerative myelin changes, axonal degeneration, as well as remyelination. SCA is a consistent finding in the SC of MS patients and was also detected at a late time point in TMEV-IDD. Conclusion: This comparative study further indicates the suitability of TMEV-IDD as animal model also for the investigation of progressive SC lesions in MS. Full article
Show Figures

Figure 1

13 pages, 1581 KiB  
Article
Identification of Cerebrospinal Fluid Metabolites as Biomarkers for Enterovirus Meningitis
by Dominica Ratuszny, Kurt-Wolfram Sühs, Natalia Novoselova, Maike Kuhn, Volkhard Kaever, Thomas Skripuletz, Frank Pessler and Martin Stangel
Int. J. Mol. Sci. 2019, 20(2), 337; https://doi.org/10.3390/ijms20020337 - 15 Jan 2019
Cited by 19 | Viewed by 4054
Abstract
Enteroviruses are among the most common causes of viral meningitis. Enteroviral meningitis continues to represent diagnostic challenges, as cerebrospinal fluid (CSF) cell numbers (a well validated diagnostic screening tool) may be normal in up to 15% of patients. We aimed to identify potential [...] Read more.
Enteroviruses are among the most common causes of viral meningitis. Enteroviral meningitis continues to represent diagnostic challenges, as cerebrospinal fluid (CSF) cell numbers (a well validated diagnostic screening tool) may be normal in up to 15% of patients. We aimed to identify potential CSF biomarkers for enteroviral meningitis, particularly for cases with normal CSF cell count. Using targeted liquid chromatography-mass spectrometry, we determined metabolite profiles from patients with enteroviral meningitis (n = 10), and subdivided them into those with elevated (n = 5) and normal (n = 5) CSF leukocyte counts. Non-inflamed CSF samples from patients with Bell’s palsy and normal pressure hydrocephalus (n = 19) were used as controls. Analysis of 91 metabolites revealed considerable metabolic reprogramming in the meningitis samples. It identified phosphatidylcholine PC.ae.C36.3, asparagine, and glycine as an accurate (AUC, 0.92) combined classifier for enterovirus meningitis overall, and kynurenine as a perfect biomarker for enteroviral meningitis with an increased CSF cell count (AUC, 1.0). Remarkably, PC.ae.C36.3 alone emerged as a single accurate (AUC, 0.87) biomarker for enteroviral meningitis with normal cell count, and a combined classifier comprising PC.ae.C36.3, PC.ae.C36.5, and PC.ae.C38.5 achieved nearly perfect classification (AUC, 0.99). Taken together, this analysis reveals the potential of CSF metabolites as additional diagnostic tools for enteroviral meningitis, and likely other central nervous system (CNS) infections. Full article
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 2776 KiB  
Review
Facets of Theiler’s Murine Encephalomyelitis Virus-Induced Diseases: An Update
by Ingo Gerhauser, Florian Hansmann, Malgorzata Ciurkiewicz, Wolfgang Löscher and Andreas Beineke
Int. J. Mol. Sci. 2019, 20(2), 448; https://doi.org/10.3390/ijms20020448 - 21 Jan 2019
Cited by 54 | Viewed by 7985
Abstract
Theiler’s murine encephalomyelitis virus (TMEV), a naturally occurring, enteric pathogen of mice is a Cardiovirus of the Picornaviridae family. Low neurovirulent TMEV strains such as BeAn cause a severe demyelinating disease in susceptible SJL mice following intracerebral infection. Furthermore, TMEV infections of C57BL/6 [...] Read more.
Theiler’s murine encephalomyelitis virus (TMEV), a naturally occurring, enteric pathogen of mice is a Cardiovirus of the Picornaviridae family. Low neurovirulent TMEV strains such as BeAn cause a severe demyelinating disease in susceptible SJL mice following intracerebral infection. Furthermore, TMEV infections of C57BL/6 mice cause acute polioencephalitis initiating a process of epileptogenesis that results in spontaneous recurrent epileptic seizures in approximately 50% of affected mice. Moreover, C3H mice develop cardiac lesions after an intraperitoneal high-dose application of TMEV. Consequently, TMEV-induced diseases are widely used as animal models for multiple sclerosis, epilepsy, and myocarditis. The present review summarizes morphological lesions and pathogenic mechanisms triggered by TMEV with a special focus on the development of hippocampal degeneration and seizures in C57BL/6 mice as well as demyelination in the spinal cord in SJL mice. Furthermore, a detailed description of innate and adaptive immune responses is given. TMEV studies provide novel insights into the complexity of organ- and mouse strain-specific immunopathology and help to identify factors critical for virus persistence. Full article
Show Figures

Figure 1

Back to TopTop