Next Issue
Volume 7, March
Previous Issue
Volume 6, September
 
 

C, Volume 6, Issue 4 (December 2020) – 24 articles

Cover Story (view full-size image): MXenes, a large group of two-dimensional transition metal carbides and nitrides, possess hydrophilic surfaces, high electrical conductivity, and outstanding mechanical properties. Titanium carbide (Ti3C2Tx) MXene with metallic conductivity can be used to coat insulating glass fibers, providing a uniform coating made of flakes with nanometer thickness and lateral dimensions of a few micrometers. Plasma treatment of the glass fibers facilitates the adhesion of MXene flakes, and the fibers become conductive after coating. MXene-coated glass fibers can be used in the development of damage-sensing polymer–matrix composites with a strong fiber–matrix interface. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 3434 KiB  
Review
Carbonaceous Materials Investigated by Small-Angle X-ray and Neutron Scattering
by Eneli Härk and Matthias Ballauff
C 2020, 6(4), 82; https://doi.org/10.3390/c6040082 - 19 Dec 2020
Cited by 8 | Viewed by 4664
Abstract
Carbonaceous nanomaterials have become important materials with widespread applications in battery systems and supercapacitors. The application of these materials requires precise knowledge of their nanostructure. In particular, the porosity of the materials together with the shape of the pores and the total internal [...] Read more.
Carbonaceous nanomaterials have become important materials with widespread applications in battery systems and supercapacitors. The application of these materials requires precise knowledge of their nanostructure. In particular, the porosity of the materials together with the shape of the pores and the total internal surface must be known accurately. Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) present the methods of choice for this purpose. Here we review our recent investigations using SAXS and SANS. We first describe the theoretical basis of the analysis of carbonaceous material by small-angle scattering. The evaluation of the small-angle data relies on the powerful concept of the chord length distribution (CLD) which we explain in detail. As an example of such an evaluation, we use recent analysis by SAXS of carbide-derived carbons. Moreover, we present our SAXS analysis on commercially produced activated carbons (ACN, RP-20) and provide a comparison with small-angle neutron scattering data. This comparison demonstrates the wealth of additional information that would not be obtained by the application of either method alone. SANS allows us to change the contrast, and we summarize the main results using different contrast matching agents. The pores of the carbon nanomaterials can be filled gradually by deuterated p-xylene, which leads to a precise analysis of the pore size distribution. The X-ray scattering length density of carbon can be matched by the scattering length density of sulfur, which allows us to see the gradual filling of the nanopores by sulfur in a melt-impregnation procedure. This process is important for the application of carbonaceous materials as cathodes in lithium/sulfur batteries. All studies summarized in this review underscore the great power and precision with which carbon nanomaterials can be analyzed by SAXS and SANS. Full article
(This article belongs to the Special Issue Carbide Derived Carbons)
Show Figures

Graphical abstract

83 pages, 8766 KiB  
Review
Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-Ion Batteries
by Poonam Sehrawat, Abid Abid, Saikh S. Islam, Alain Mauger and Christian M. Julien
C 2020, 6(4), 81; https://doi.org/10.3390/c6040081 - 16 Dec 2020
Cited by 13 | Viewed by 6530
Abstract
Presently, the negative electrodes of lithium-ion batteries (LIBs) are constituted by carbon-based materials, which exhibit a limited specific capacity 372 mAh g−1 associated with the cycle in the composition between C and LiC6. Therefore, many efforts are currently made towards [...] Read more.
Presently, the negative electrodes of lithium-ion batteries (LIBs) are constituted by carbon-based materials, which exhibit a limited specific capacity 372 mAh g−1 associated with the cycle in the composition between C and LiC6. Therefore, many efforts are currently made towards the technological development of nanostructured graphene materials because of their extraordinary mechanical, electrical, and electrochemical properties. Recent progress on advanced hybrids based on graphene oxide (GO) and reduced graphene oxide (rGO) has demonstrated the synergistic effects between graphene and an electroactive material (silicon, germanium, metal oxides (MOx)) as electrode for electrochemical devices. In this review, attention is focused on advanced materials based on GO and rGO and their composites used as anode materials for lithium-ion batteries. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Figure 1

28 pages, 7844 KiB  
Review
Carbon Allotropes as ITO Electrode Replacement Materials in Liquid Crystal Devices
by Ingo Dierking
C 2020, 6(4), 80; https://doi.org/10.3390/c6040080 - 10 Dec 2020
Cited by 8 | Viewed by 4151
Abstract
Indium tin oxide (ITO)-free optoelectronic devices have been discussed for a number of years in the light of a possible indium shortage as demand rises. In particular, this is due to the largely increased number of flat panel displays and especially liquid crystal [...] Read more.
Indium tin oxide (ITO)-free optoelectronic devices have been discussed for a number of years in the light of a possible indium shortage as demand rises. In particular, this is due to the largely increased number of flat panel displays and especially liquid crystal displays (LCDs) being produced for home entertainment TV and mobile technologies. While a shortage of primary indium seems far on the horizon, nevertheless, recycling has become an important issue, as has the development of ITO-free electrode materials, especially for flexible liquid crystal devices. The main contenders for new electrode technologies are discussed with an emphasis placed on carbon-based materials for LCDs, including composite approaches. At present, these already fulfil the technical specifications demanded from ITO with respect to transmittance and sheet resistance, albeit not in relation to cost and large-scale production. Advantages and disadvantages of ITO-free technologies are discussed, with application examples given. An outlook into the future suggests no immediate transition to carbon-based electrodes in the area of LCDs, while this may change in the future once flexible displays and environmentally friendly smart window solutions or energy harvesting building coverings become available. Full article
(This article belongs to the Special Issue Carbon Based Electrochemical Devices)
Show Figures

Graphical abstract

32 pages, 8356 KiB  
Article
A Study on the Effect of Carbon Nanotubes’ Distribution and Agglomeration in the Free Vibration of Nanocomposite Plates
by D. S. Craveiro and M. A. R. Loja
C 2020, 6(4), 79; https://doi.org/10.3390/c6040079 - 30 Nov 2020
Cited by 7 | Viewed by 3667
Abstract
The present work aimed to characterize the free vibrations’ behaviour of nanocomposite plates obtained by incorporating graded distributions of carbon nanotubes (CNTs) in a polymeric matrix, considering the carbon nanotubes’ agglomeration effect. This effect is known to degrade material properties, therefore being important [...] Read more.
The present work aimed to characterize the free vibrations’ behaviour of nanocomposite plates obtained by incorporating graded distributions of carbon nanotubes (CNTs) in a polymeric matrix, considering the carbon nanotubes’ agglomeration effect. This effect is known to degrade material properties, therefore being important to predict the consequences it may bring to structures’ mechanical performance. To this purpose, the elastic properties’ estimation is performed according to the two-parameter agglomeration model based on the Eshelby–Mori–Tanaka approach for randomly dispersed nano-inclusions. This approach is implemented in association with the finite element method to determine the natural frequencies and corresponding mode shapes. Three main agglomeration cases were considered, namely, agglomeration absence, complete agglomeration, and partial agglomeration. The results show that the agglomeration effect has a negative impact on the natural frequencies of the plates, regardless the CNTs’ distribution considered. For the corresponding vibrations’ mode shapes, the agglomeration effect was shown in most cases not to have a significant impact, except for two of the cases studied: for a square plate and a rectangular plate with symmetrical and unsymmetrical CNTs’ distribution, respectively. Globally, the results confirm that not accounting for the nanotubes’ agglomeration effect may lead to less accurate elastic properties and less structures’ performance predictions. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Figure 1

18 pages, 3246 KiB  
Article
Nitrate Catalytic Reduction over Bimetallic Catalysts: Catalyst Optimization
by A. Sofia G. G. Santos, João Restivo, Carla A. Orge, M. Fernando R. Pereira and O. Salomé G. P. Soares
C 2020, 6(4), 78; https://doi.org/10.3390/c6040078 - 28 Nov 2020
Cited by 15 | Viewed by 4284
Abstract
The catalytic removal of nitrate (NO3) in water using hydrogen as a reducing agent was studied using palladium-copper bimetallic catalysts in different supports. Commercial carbon nanotubes (CNTs), used as received and with different mechanical (CNT (BM 2h)) and chemical modifications [...] Read more.
The catalytic removal of nitrate (NO3) in water using hydrogen as a reducing agent was studied using palladium-copper bimetallic catalysts in different supports. Commercial carbon nanotubes (CNTs), used as received and with different mechanical (CNT (BM 2h)) and chemical modifications (CNT (BM 4h)-N), titanium dioxide (TiO2) and composite materials (TiO2-CNT) were considered as main supports for the metallic phase. Different metal loadings were studied to synthesize an optimized catalyst with high NO3 conversion rate and considerable selectivity for N2 formation. Among all the studied support materials, the milled carbon nanotubes (sample CNT (BM 2h) was the support that showed the most promising results using 1%Pd-1%Cu as metallic phases. The most active catalysts were 2.5%Pd-2.5%Cu and 5%Pd-2.5%Cu supported on CNT (BM 2h), achieving total conversion after a 120 min reaction with N2 selectivity values of 62% and 60%, respectively. Reutilization experiments allowed us to conclude that these catalysts were stable during several reactions, in terms of NO3 conversion rate. However, the consecutive reuse of the catalyst leads to major changes concerning NH4+ selectivity values. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

6 pages, 1550 KiB  
Communication
Bacteria Supported on Carbon-Coated Monoliths for Water Denitrification
by David Espinosa-Iglesias, Esther Bailón-García, Mª Isidora Bautista-Toledo, Francisco Carrasco-Marín and Agustín F. Pérez-Cadenas
C 2020, 6(4), 77; https://doi.org/10.3390/c6040077 - 24 Nov 2020
Viewed by 2660
Abstract
Escherichia coli bacteria were grown inside the channels of cordierite monoliths previously coated with a very good adhered carbon layer. These monolithic structures were tested at room temperature for the nitrate elimination of water solutions working as a batch monolithic bioreactor and showed [...] Read more.
Escherichia coli bacteria were grown inside the channels of cordierite monoliths previously coated with a very good adhered carbon layer. These monolithic structures were tested at room temperature for the nitrate elimination of water solutions working as a batch monolithic bioreactor and showed very good results, as 100% of the nitrates and nitrites were completely removed in the used experimental conditions. Different rate flows of bacteria growth and nitrate elimination were studied, showing that the higher the flow velocity, the faster the nitrate elimination. Finally, the reproducibility tests confirmed the good performance of the proposed bioreactor. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

15 pages, 881 KiB  
Review
Performing Quality Assurance of Carbon Dioxide for Carbon Capture and Storage
by Arul Murugan, Richard J. C. Brown, Robbie Wilmot, Delwar Hussain, Sam Bartlett, Paul J. Brewer, David R. Worton, Thomas Bacquart, Tom Gardiner, Rod A. Robinson and Andrew J. Finlayson
C 2020, 6(4), 76; https://doi.org/10.3390/c6040076 - 14 Nov 2020
Cited by 10 | Viewed by 5917
Abstract
Impurities in carbon dioxide can affect several aspects of the carbon capture and storage process, including storage capacity, rock erosion, accuracy of flow meters, and toxicity of potential leaks. There is an industry need for guidance on performing purity analysis before carbon dioxide [...] Read more.
Impurities in carbon dioxide can affect several aspects of the carbon capture and storage process, including storage capacity, rock erosion, accuracy of flow meters, and toxicity of potential leaks. There is an industry need for guidance on performing purity analysis before carbon dioxide is transported and stored. This paper reviews selected reports that specifically provide threshold amount fraction limits for impurities in carbon dioxide for the purpose of transport and storage, with rationales for these limits. A carbon dioxide purity specification is provided (including threshold amount fractions of impurities) on the basis of the findings, as well as recommendations on further work required to develop a suitable gas metrology infrastructure to support these measurements including primary reference materials, sampling methods, and instruments for performing purity analysis. These recommendations provide important guidance to operators and gas analysis laboratories for performing quality assurance. Full article
(This article belongs to the Special Issue CO2 Capture and Valorization)
Show Figures

Graphical abstract

12 pages, 2980 KiB  
Article
Sensitive Voltammetric Detection of Chloroquine Drug by Applying a Boron-Doped Diamond Electrode
by Geiser Gabriel Oliveira, Déborah Christine Azzi, Tiago Almeida Silva, Paulo Roberto de Oliveira, Orlando Fatibello-Filho and Bruno Campos Janegitz
C 2020, 6(4), 75; https://doi.org/10.3390/c6040075 - 11 Nov 2020
Cited by 13 | Viewed by 3840
Abstract
In this research, a boron-doped diamond (BDD) electrode has been explored to detect the chloroquine drug. The electrochemical performance of BDD electrode towards the irreversible anodic response of chloroquine was investigated by subjecting this electrode to the cathodic (−0.5 A cm−2 by [...] Read more.
In this research, a boron-doped diamond (BDD) electrode has been explored to detect the chloroquine drug. The electrochemical performance of BDD electrode towards the irreversible anodic response of chloroquine was investigated by subjecting this electrode to the cathodic (−0.5 A cm−2 by 180 s, generating a predominantly hydrogen-terminated surface) and anodic (+0.5 A cm−2 by 30 s, oxygen-terminated surface) pretreatments. The cathodically pretreated BDD electrode ensured a better-defined anodic peak and higher current intensity. Thus, by applying the cathodically pretreated BDD electrode and square-wave voltammetry (SWV), the analytical curve was linear from 0.01 to 0.25 µmol L−1 (correlation coefficient of 0.994), with sensitivity and limit of detection of 12.2 µA L µmol−1 and 2.0 nmol−1, respectively. This nanomolar limit of detection is the lowest recorded so far with modified and unmodified electrodes. Full article
(This article belongs to the Special Issue Carbon Based Electrochemical Devices)
Show Figures

Figure 1

14 pages, 3027 KiB  
Article
New Insights into H2S Adsorption on Graphene and Graphene-Like Structures: A Comparative DFT Study
by Azam Salmankhani, Zohre Karami, Amin Hamed Mashhadzadeh, Mohammad Reza Ganjali, Vahid Vatanpour, Amin Esmaeili, Sajjad Habibzadeh, Mohammad Reza Saeb, Vanessa Fierro and Alain Celzard
C 2020, 6(4), 74; https://doi.org/10.3390/c6040074 - 9 Nov 2020
Cited by 16 | Viewed by 4752
Abstract
The efficient removal of pollutants from different environments has been one of the great challenges for scientists in recent years. However, the understanding of the mechanisms underlying this phenomenon is still the subject of passionate debates, mainly due to the lack of experimental [...] Read more.
The efficient removal of pollutants from different environments has been one of the great challenges for scientists in recent years. However, the understanding of the mechanisms underlying this phenomenon is still the subject of passionate debates, mainly due to the lack of experimental tools capable of detecting events at the atomic scale. Herein, a comparative theoretical study was carried out to capture the adsorption of H2S on metal oxide surfaces such as zinc oxide (ZnO) and beryllium oxide (BeO), as well as graphene and Ni-decorated graphene. A simulation based on density-functional theory (DFT) was carried out by adopting General Gradient Approximation (GGA) under the Perdew–Burke–Ernzerhof (PBE) function. The calculations quantified H2S adsorption on the considered metal oxide sheets as well as on the non-decorated graphene having a physical nature. In contrast, H2S adsorbed on Ni-decorated graphene sheet gave an adsorption energy of −1.64 eV due to the interaction of S and Ni atoms through the formation of a covalent bond, proof of chemisorption. It seems that the graphene sheet decorated with Ni atoms is a more suitable adsorbent for H2S molecules than BeO, ZnO, or non-decorated graphene, providing a theoretical basis for future studies. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

13 pages, 3106 KiB  
Article
Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors
by Rashma Chaudhary, Subrata Maji, Rekha Goswami Shrestha, Ram Lal Shrestha, Timila Shrestha, Katsuhiko Ariga and Lok Kumar Shrestha
C 2020, 6(4), 73; https://doi.org/10.3390/c6040073 - 6 Nov 2020
Cited by 18 | Viewed by 5280
Abstract
Hierarchically porous activated carbon materials from agro-waste, Jackfruit seeds are prepared by a chemical activation method involving the treatment with zinc chloride (ZnCl2) at different temperatures (600–1000 °C). The electrochemical supercapacitance performances of the prepared materials were studied in an aqueous [...] Read more.
Hierarchically porous activated carbon materials from agro-waste, Jackfruit seeds are prepared by a chemical activation method involving the treatment with zinc chloride (ZnCl2) at different temperatures (600–1000 °C). The electrochemical supercapacitance performances of the prepared materials were studied in an aqueous electrolyte (1 M sulfuric acid, H2SO4) in a three-electrode system. Jackfruit seed carbons display nanoporous structures consisting of both micro- and mesopore architectures and they are amorphous in nature and also contain oxygenated surface functional groups, as confirmed by powder X-ray diffraction (pXRD), Raman scattering, and Fourier-transformed infrared (FTIR) spectroscopy, respectively. The surface areas and pore volumes were found to be 1216.0 to 1340.4 m2·g−1 and 0.804 to 1.144 cm3·g−1, respectively, demonstrating the better surface textural properties compared to the commercial activated carbons. Due to the high surface area, large pore volume, and well developed hierarchical micro- and mesoporosity, the optimal sample achieved a high specific capacitance of 292.2 F·g−1 at 5 mV·s−1 and 261.3 F·g−1 at 1 A·g−1 followed by outstanding high rate capability. The electrode sustained 71.6% capacity retention at a high current density of 20 A·g−1. Furthermore, the electrode displayed exceptional cycling stability with small capacitance loss (0.6%) even after 10,000 charging–discharging cycles, suggesting that Jackfruit seed would have potential in low-cost and scalable production of nanoporous carbon materials for supercapacitors applications. Full article
Show Figures

Graphical abstract

16 pages, 4903 KiB  
Article
Wideband Radar Absorbing Structure Using Polyaniline-Graphene Nanocomposite
by Paulbert Thomas, Libimol V. Abdulhakim, Neeraj K. Pushkaran and Aanandan C. Karuvandi
C 2020, 6(4), 72; https://doi.org/10.3390/c6040072 - 5 Nov 2020
Cited by 7 | Viewed by 3578
Abstract
A wideband non-resonant absorber is proposed, and its radar cross section (RCS) reduction is investigated. A discussion on the functional materials available is followed by the design of an absorber on a Plexiglas substrate with polyaniline-graphene nanocomposite as layered square inclusions with thicknesses [...] Read more.
A wideband non-resonant absorber is proposed, and its radar cross section (RCS) reduction is investigated. A discussion on the functional materials available is followed by the design of an absorber on a Plexiglas substrate with polyaniline-graphene nanocomposite as layered square inclusions with thicknesses and conductivities scaled to golden ratio. The measured dielectric properties of polyaniline-graphene nanocomposites are used in the fullwave simulation. The design parameters have been identified and optimized using CST Microwave Studio. As designed structure is fabricated and the reflection is measured. The objective of the work is to demonstrate the use of non-metallic conducting polymer composites devoid of metals for radar absorbing material (RAM) structural designs. The structure is an all-polymer and electrically thin design with a potential to be 3D printed to suit the target object. Full article
Show Figures

Figure 1

11 pages, 2360 KiB  
Review
Fullerene Polymers: A Brief Review
by Peter J. F. Harris
C 2020, 6(4), 71; https://doi.org/10.3390/c6040071 - 5 Nov 2020
Cited by 20 | Viewed by 6174
Abstract
This paper reviews the ways in which C60 and other fullerene molecules can be incorporated into polymeric structures. Firstly, polymers in which the fullerenes are incorporated into the structure by covalent or noncovalent bonding are discussed. These include “pearl necklace” structures, “charm [...] Read more.
This paper reviews the ways in which C60 and other fullerene molecules can be incorporated into polymeric structures. Firstly, polymers in which the fullerenes are incorporated into the structure by covalent or noncovalent bonding are discussed. These include “pearl necklace” structures, “charm bracelet” structures, organometallic polymers, crosslinked polymers, end-capped polymers, star-shaped polymers and supramolecular polymers. Secondly, all-carbon polymers, which are produced by fusing fullerenes together, are covered. The synthesis and properties of each class of fullerene polymer are outlined and the prospects for commercial applications considered. Full article
(This article belongs to the Special Issue Carbon-Rich Compounds: From Molecules to Materials)
Show Figures

Graphical abstract

10 pages, 2425 KiB  
Article
Microwave Plasma Formation of Nanographene and Graphitic Carbon Black
by Raju R. Kumal, Akshay Gharpure, Vignesh Viswanathan, Aayush Mantri, George Skoptsov and Randy Vander Wal
C 2020, 6(4), 70; https://doi.org/10.3390/c6040070 - 31 Oct 2020
Cited by 5 | Viewed by 4407
Abstract
Aerosol formation of novel carbons offers potential for scale and purity unmatched by condensed phase processes. A microwave driven plasma drives decarbonization of methane to form solid carbon as an aerosol. Dependent upon gas mixture, different forms of carbon are produced: 2D nanographene [...] Read more.
Aerosol formation of novel carbons offers potential for scale and purity unmatched by condensed phase processes. A microwave driven plasma drives decarbonization of methane to form solid carbon as an aerosol. Dependent upon gas mixture, different forms of carbon are produced: 2D nanographene and a 3D graphitic carbon black analogue. TEM reveals the morphological differences and nanostructure. The ability to tune the dominant form is demonstrated by control of the CH4/Ar ratio. TGA plots reveal the change in products with feed gas composition and quality by oxidation temperature shift. Corresponding Raman analysis illustrates control of graphene content and lamellae quality by peak ratios. To test the origins of the graphitic particles and nanographene, a commercial carbon black was seeded into the microwave reactor, demonstrating a path for graphitic nanostructure evolution and confirming the molecular growth origins for the nanographene. Full article
(This article belongs to the Special Issue Characterization of Disorder in Carbons)
Show Figures

Graphical abstract

12 pages, 3127 KiB  
Article
Carbon Nanodots Synthesized from Dunaliella salina as Sun Protection Filters
by Theodoros G. Chatzimitakos, Athanasia Kasouni, Anastassios Troganis, Ioannis Leonardos, Ioannis Tzovenis, Alexandros Ntzouvaras and Constantine Stalikas
C 2020, 6(4), 69; https://doi.org/10.3390/c6040069 - 30 Oct 2020
Cited by 5 | Viewed by 3850
Abstract
Carbon nanodots (CNDs) are more and more being exploited for various applications including biological ones. To this end, they have been thoroughly studied for their potential as antibacterial, wound healing, and bioimaging agents. In this study, we examined the sun protection properties of [...] Read more.
Carbon nanodots (CNDs) are more and more being exploited for various applications including biological ones. To this end, they have been thoroughly studied for their potential as antibacterial, wound healing, and bioimaging agents. In this study, we examined the sun protection properties of CNDs. Dunaliella salina was selected as a promising precursor for the synthesis of CNDs which were compared with those produced by citric acid, a widely used precursor for such materials. The CNDs were examined spectrophotometrically, and the sun protection factors were calculated. Additionally, in vitro experiments were carried out to evaluate their UV protection properties and to obtain better insight into whether CNDs are suitable to be used as filters for the development of new sunscreens. The results were conclusive that both CNDs possess favorable properties that potentiate their use for the development of sunscreens. However, the CNDs from Dunaliella salina were found to be superior to those derived from citric acid. Therefore, they can further be exploited as sun protection filters. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

14 pages, 2737 KiB  
Article
Electrochemical Aspects of a Nitrogen-Doped Pseudo-Graphitic Carbon Material: Resistance to Electrode Fouling by Air-Aging and Dopamine Electro-Oxidation
by Kailash Hamal, Jeremy May, Haoyu Zhu, Forrest Dalbec, Elena Echeverria, David N. McIlroy, Eric Aston and I. Francis Cheng
C 2020, 6(4), 68; https://doi.org/10.3390/c6040068 - 27 Oct 2020
Cited by 5 | Viewed by 3454
Abstract
The nitrogen-doped form of GUITAR (pseudo-Graphite from the University of Idaho Thermalized Asphalt Reaction) was examined by X-ray photoelectron, Raman, and X-ray diffraction spectroscopies and cyclic voltammetry (CV). Electrochemical studies indicate that N-GUITAR exhibits significant resistance to fouling by adsorption and by passivation. [...] Read more.
The nitrogen-doped form of GUITAR (pseudo-Graphite from the University of Idaho Thermalized Asphalt Reaction) was examined by X-ray photoelectron, Raman, and X-ray diffraction spectroscopies and cyclic voltammetry (CV). Electrochemical studies indicate that N-GUITAR exhibits significant resistance to fouling by adsorption and by passivation. Unlike other carbon materials, it maintains fast heterogenous electron transfer (HET) kinetics with Fe(CN)63−/4− with exposure to air. The CV peak potential separation (ΔEp) of 66 mV increased to 69 mV in 3 h vs. 67 to 221 mV for a highly oriented pyrolytic graphite (HOPG) electrode. Water contact angle measurements indicate that N-GUITAR was able to better maintain a hydrophilic state during the 3-h exposure, going from 55.8 to 70.4° while HOPG increased from 63.8 to 80.1°. This indicates that N-GUITAR better resisted adsorption of volatile organic compounds. CV studies of dopamine also indicate N-GUITAR is resistant to passivation. The ΔEp for the dopamine/o-dopaminoquinone couple is 83 mV indicating fast HET rates. This is reflected in the peak current ratios for the oxidation and reduction processes of 1.3 indicating that o-dopaminoquinone is not lost to passivation processes. This ratio along with the minimal signal attenuation is the best reported in literature. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

11 pages, 1718 KiB  
Review
Mechanisms of Carbon Nanotubes and Graphene Growth: Kinetics versus Thermodynamics
by Luís Sousa Lobo and Sónia A. C. Carabineiro
C 2020, 6(4), 67; https://doi.org/10.3390/c6040067 - 27 Oct 2020
Cited by 3 | Viewed by 3231
Abstract
Thermodynamics must be favorable for the growth of carbon nanotubes (CNTs) and graphene to take place, but a kinetic study is required to find the operating mechanism. In fact, thermodynamics indicates whether a reaction is possible; however, the route prevailing is not necessarily [...] Read more.
Thermodynamics must be favorable for the growth of carbon nanotubes (CNTs) and graphene to take place, but a kinetic study is required to find the operating mechanism. In fact, thermodynamics indicates whether a reaction is possible; however, the route prevailing is not necessarily the most thermodynamically favorable, but the fastest one. Detailed kinetic studies state that there are three alternative routes operating under different temperature and pressure rates. The modes and rates of diffusion of carbon (C) atoms and noble metals have been known since the 1930s, but proof of C bulk diffusion operating in CNT growth came from detailed kinetic studies performed in the early 1970s, when reversible versus irreversible C formation was discussed with examples. The reason for interstitial C bulk diffusion in transition metals is evidenced based on the values of covalent radius. The reason for operating under steady-state conditions (linearity of the weight versus time) when searching for the operating mechanism is discussed herein. The steady-state C formation process operates sometimes with two different solid phases at each side of the catalyst particle (e.g., Ni and Ni3C), with thicknesses proportional to 1/D of the respective C bulk diffusivities when the carbon bulk diffusion step is the rate-determining one. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Figure 1

20 pages, 7686 KiB  
Article
Characterization of Molecular Spacer-Functionalized Nanostructured Carbons for Electrical Energy Storage Supercapacitor Materials
by Justin Zuczek, Matthew Bonfield, Nesreen Elathram, William R. Hixson, Terawit Kongruengkit, James B. Mitchell, Nickolas Zelenka, Leonid D. Popov, Andrey Morozov, Igor N. Shcherbakov and Jordan C. Poler
C 2020, 6(4), 66; https://doi.org/10.3390/c6040066 - 23 Oct 2020
Viewed by 3219
Abstract
The use of molecular spacers between Carbon Nanotubes (CNTs) has been shown to increase the ion-accessible surface area for use in supercapacitor materials. Maintaining porosity and electrical conductivity is important for maximizing capacitance, energy storage, and power. Two reported novel coordination complexes have [...] Read more.
The use of molecular spacers between Carbon Nanotubes (CNTs) has been shown to increase the ion-accessible surface area for use in supercapacitor materials. Maintaining porosity and electrical conductivity is important for maximizing capacitance, energy storage, and power. Two reported novel coordination complexes have shown exceptional Faradaic charge transfer and binding capabilities to prevent CNT aggregation. Dispersion stability measurements show less aggregation of HiPco Single Walled CNTs (SWCNTs) compared to other chirality and multilayered nanotubes. Cu2FcOH binds weakly to CNTs compared +2Zn2 and +2Ru2 due to Columbic electrostatic interactions, which is favorable because it does not collapse the electrical double layer as strongly as +2Zn2 or +2Ru2. Adsorption isotherms and a full characterization (1H NMR, ATR FT-IR, UV-Vis, CV) of these novel complexes are presented. Electrical characterization using CV, charge discharge, and electrochemical impedance spectroscopy and the supercapacitor performance of functionalized thin film electrodes are presented as a function of spacer properties and nanostructured carbon tube diameter. This study uses rigid, earth-abundant coordination complexes that bind to and intercalate between SWCNTs. These functionalized nanostructured carbons are then used to make electrodes for electrical double layer supercapacitors. A complete description of the synthesis, characterization, and processing of these materials is described. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

14 pages, 1275 KiB  
Article
Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis
by Taina Ohra-aho, Christian Lindfors, Juha Lehtonen, Tarja Tamminen and Virpi Siipola
C 2020, 6(4), 65; https://doi.org/10.3390/c6040065 - 20 Oct 2020
Cited by 7 | Viewed by 3252
Abstract
Biochars are attractive materials for carbon catalysts since their carbon content and surface area are relatively high and minerals present in biochar can act as active sites for catalytic reactions. In this study, biochars from the fast pyrolysis of birch, pine, and unbarked [...] Read more.
Biochars are attractive materials for carbon catalysts since their carbon content and surface area are relatively high and minerals present in biochar can act as active sites for catalytic reactions. In this study, biochars from the fast pyrolysis of birch, pine, and unbarked willow were activated and acid washed. These materials were tested as catalysts for a post-treatment of pine wood pyrolysis vapors, aiming at stabilizing the vapors before their condensation. All the unmodified biochars had high content of minerals, those being highest in willow due to the bark. After the activation treatments, the surface areas and pore volumes of all biochars significantly increased. All studied biochars and activated carbon catalysts reduced the oxygen content of the pyrolysis degradation products. This effect was more pronounced for compounds derived from polysaccharides vs. lignin. The most promising catalyst for vapor upgrading was unwashed activated carbon from willow, having high surface areas and pore volumes together with high mineral contents. These properties together promoted the high conversion of polysaccharide-derived products (anhydrosugars, acids, and pyrans) into CO2. Release of highly oxidized degradation products may indicate that reductive stabilization takes place via hydrogen migration from the polysaccharide-derivatives to lignin derivatives, mediated by the carbon catalyst. Full article
Show Figures

Figure 1

12 pages, 2963 KiB  
Article
Electrically Conductive MXene-Coated Glass Fibers for Damage Monitoring in Fiber-Reinforced Composites
by Christine B. Hatter, Asia Sarycheva, Ariana Levitt, Babak Anasori, Latha Nataraj and Yury Gogotsi
C 2020, 6(4), 64; https://doi.org/10.3390/c6040064 - 16 Oct 2020
Cited by 14 | Viewed by 6242
Abstract
Multifunctional fiber-reinforced composites play a significant role in advanced aerospace and military applications due to their high strength and toughness resulting in superior damage tolerance. However, early detection of structural changes prior to visible damage is critical for extending the lifetime of the [...] Read more.
Multifunctional fiber-reinforced composites play a significant role in advanced aerospace and military applications due to their high strength and toughness resulting in superior damage tolerance. However, early detection of structural changes prior to visible damage is critical for extending the lifetime of the part. MXenes, an emerging class of two-dimensional (2D) nanomaterials, possess hydrophilic surfaces, high electrical conductivity and mechanical properties that can potentially be used to identify damage within fiber-reinforced composites. In this work, conductive Ti3C2Tx MXene flakes were successfully transferred onto insulating glass fibers via oxygen plasma treatment improving adhesion. Increasing plasma treatment power, time and coating layers lead to a decrease in electrical resistance of MXene-coated fibers. Optimized uniformity was achieved using an alternating coating approach with smaller flakes helping initiate and facilitate adhesion of larger flakes. Tensile testing with in-situ electrical resistance tracking showed resistances as low as 1.8 kΩ for small-large flake-coated fiber bundles before the break. Increased resistance was observed during testing, but due to good adhesion between the fiber and MXene, most connective pathways within fiber bundles remained intact until fiber bundles were completely separated. These results demonstrate a potential use of MXene-coated glass fibers in damage-sensing polymer-matrix composites. Full article
(This article belongs to the Special Issue Carbide Derived Carbons)
Show Figures

Figure 1

19 pages, 3504 KiB  
Article
Improving the Activity of Fe/C/N ORR Electrocatalyst Using Double Ammonia Promoted CO2 Laser Pyrolysis
by Henri Perez, Mathieu Frégnaux, Emeline Charon, Arnaud Etcheberry and Olivier Sublemontier
C 2020, 6(4), 63; https://doi.org/10.3390/c6040063 - 14 Oct 2020
Viewed by 3023
Abstract
Recently, we reported the use of CO2 laser pyrolysis for the synthesis of promising Fe/C/N electrocatalysts for Oxygen Reduction Reaction (ORR) in fuel cells. The set-up used single laser pyrolysis of an aerosolized solution of iron acetylacetonate in toluene with ammonia, both [...] Read more.
Recently, we reported the use of CO2 laser pyrolysis for the synthesis of promising Fe/C/N electrocatalysts for Oxygen Reduction Reaction (ORR) in fuel cells. The set-up used single laser pyrolysis of an aerosolized solution of iron acetylacetonate in toluene with ammonia, both as laser energy transfer agent and nitrogen source. In the present paper, we investigate the effect of a second ammonia promoted CO2 laser pyrolysis on the feature and ORR activity of Fe/C/N electrocatalysts. Indeed, compared to single pyrolysis, the second ammonia promoted CO2 laser pyrolysis could be an interesting way to synthesize in one-step performing ORR electrocatalysts on a large scale. For this comparison, a two-stage reactor was built, allowing both single ammonia-induced CO2 laser pyrolysis as reported previously or double ammonia-induced CO2 laser pyrolysis. In the latter configuration, the catalyst nanopowder flow is formed at the first stage of the reactor, then mixed with a second ammonia flow and allowed to cross a second CO2 laser beam, thus undergoing a second ammonia-induced CO2 laser pyrolysis before being collected on filters. It is found that the second ammonia-induced CO2 laser pyrolysis significantly improves the ORR performances of the materials prepared by single CO2 laser pyrolysis. The effect is demonstrated for three different catalysts for which the onset potentials for the ORR from single-stage to double-stage configuration increase from 625 mV to 845 mV, 790 mV to 860 mV, and 800 mV to 885 mV, respectively. The selectivity of the ORR was determined at 600 mV/SHE and lie between 3.41 and 3.72. These promising performances suggesting potentialities for the one-step formation of highly active Fe/C/N ORR electrocatalysts are discussed, based on results of surface analysis by XPS, specific surface area measurements, and Raman spectroscopy. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

18 pages, 3613 KiB  
Article
Facile Method to Prepare pH-Sensitive PEI-Functionalized Carbon Nanotubes as Rationally Designed Vehicles for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Delivery
by Vassilis Tangoulis, Nikolia Lalioti, John Parthenios, Nathan Langford, Eugenia Valsami-Jones, Chrisoula Kakoulidou, George Psomas and Vlasoula Bekiari
C 2020, 6(4), 62; https://doi.org/10.3390/c6040062 - 7 Oct 2020
Cited by 4 | Viewed by 2890
Abstract
A new pH-sensitive system designed for drug-delivery purposes and based on functionalized multiwall magnetic carbon nanotubes (Mag-CNTs) was synthesized for the effective incorporation of non-steroidal anti-inflammatory drugs (NSAIDs), aiming at drug release in characteristic acidic conditions close to the actual conditions of inflamed [...] Read more.
A new pH-sensitive system designed for drug-delivery purposes and based on functionalized multiwall magnetic carbon nanotubes (Mag-CNTs) was synthesized for the effective incorporation of non-steroidal anti-inflammatory drugs (NSAIDs), aiming at drug release in characteristic acidic conditions close to the actual conditions of inflamed tissues. Cationic hyperbranched polyethyleneimine (PEI) was immobilized on the surface of Mag-CNTs via electrostatic interactions between the positively charged protonated amines within the polymer and the carboxyl groups on the chemically oxidized Mag-CNT surface. The addition of the NSAID with a carboxylate donor, Naproxen (NAP), was achieved by indirect coupling through the amino groups of the intermediate linker PEI. FT-IR, Raman, and UV–vis spectroscopy were employed to fully characterize the synthesized nanocarrier and its functionalization procedure. The interaction of the designed nanocarrier with bovine serum albumin (BSA) was studied in vitro by fluorescence emission spectroscopy while its in vitro interaction with calf-thymus (CT) DNA was monitored by UV–vis spectroscopy and viscosity measurements and via competitive studies with ethidium bromide. The calculated binding constants were compared to those of free NAP revealing a higher binding affinity for BSA and CT DNA. Finally, drug-release studies were performed, revealing that the electrostatic linkage ensures an effective release of the drug in the acidic pH typical of inflamed cells, while maintaining the multiwall nanotubes (MWNTs)–drug conjugates stable at the typical bloodstream. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

12 pages, 3672 KiB  
Article
Hypergolic Materials Synthesis through Reaction of Fuming Nitric Acid with Certain Cyclopentadienyl Compounds
by Nikolaos Chalmpes, Athanasios B. Bourlinos, Veronika Šedajová, Vojtěch Kupka, Dimitrios Moschovas, Apostolos Avgeropoulos, Michael A. Karakassides and Dimitrios Gournis
C 2020, 6(4), 61; https://doi.org/10.3390/c6040061 - 5 Oct 2020
Cited by 10 | Viewed by 3904
Abstract
Recently we have shown the importance of hypergolic reactions in carbon materials synthesis. However, hypergolic reactions could be certainly expanded beyond carbon synthesis, offering a general preparative pathway towards a larger variety of materials. Cyclopentadienyls are one of the most common ligands in [...] Read more.
Recently we have shown the importance of hypergolic reactions in carbon materials synthesis. However, hypergolic reactions could be certainly expanded beyond carbon synthesis, offering a general preparative pathway towards a larger variety of materials. Cyclopentadienyls are one of the most common ligands in organometallic chemistry that react hypergolicly on contact with strong oxidizers. By also considering the plethora of cyclopentadienyl compounds existing today, herein we demonstrate the potential of such compounds in hypergolic materials synthesis in general (carbon or inorganic). In a first example, we show that cyclopentadienyllithium reacts hypergolicly with fuming nitric acid to produce carbon. In a second one, we show that ferrocene and cobaltocene also react hypergolicly with the concentrated acid to afford magnetic inorganic materials, such as γ-Fe2O3 and metallic Co, respectively. The present results further emphasize the importance and universal character of hypergolic reactions in materials science synthesis, as an interesting new alternative to other existing and well-established preparative methods. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

14 pages, 6191 KiB  
Review
Tetrel Bonding Interactions Involving Carbon at Work: Recent Advances in Crystal Engineering and Catalysis
by Antonio Frontera
C 2020, 6(4), 60; https://doi.org/10.3390/c6040060 - 25 Sep 2020
Cited by 24 | Viewed by 4111
Abstract
The σ- and π-hole interactions are used to define attractive forces involving elements of groups 12–18 of the periodic table acting as Lewis acids and any electron rich site (Lewis base, anion, and π-system). When the electrophilic atom belongs to group 14, the [...] Read more.
The σ- and π-hole interactions are used to define attractive forces involving elements of groups 12–18 of the periodic table acting as Lewis acids and any electron rich site (Lewis base, anion, and π-system). When the electrophilic atom belongs to group 14, the resulting interaction is termed a tetrel bond. In the first part of this feature paper, tetrel bonds formed in crystalline solids involving sp3-hybridized carbon atom are described and discussed by using selected structures retrieved from the Cambridge Structural Database. The interaction is characterized by a strong directionality (close to linearity) due to the small size of the σ-hole in the C-atom opposite the covalently bonded electron withdrawing group. The second part describes the utilization of two allotropic forms of carbon (C60 and carbon nanotubes) as supramolecular catalysts based on anion–π interactions (π-hole tetrel bonding). This part emphasizes that the π-hole, which is considerably more accessible by nucleophiles than the σ-hole, can be conveniently used in supramolecular catalysis. Full article
(This article belongs to the Collection Feature Papers in the Science and Engineering of Carbons)
Show Figures

Graphical abstract

16 pages, 3428 KiB  
Article
Electrochemical Evaluation of Directly Electrospun Carbide-Derived Carbon-Based Electrodes in Different Nonaqueous Electrolytes for Energy Storage Applications
by Siret Malmberg, Mati Arulepp, Elvira Tarasova, Viktoria Vassiljeva, Illia Krasnou and Andres Krumme
C 2020, 6(4), 59; https://doi.org/10.3390/c6040059 - 23 Sep 2020
Cited by 7 | Viewed by 3277
Abstract
This study focuses on the electrochemical behavior of thin-layer fibrous carbide-derived carbon (CDC) electrospun electrodes in commercial and research and development stage organic-solvent and ionic liquid (IL) based electrolytes. The majority of earlier published works stated various electrolytes with asymmetric cells of powder-based [...] Read more.
This study focuses on the electrochemical behavior of thin-layer fibrous carbide-derived carbon (CDC) electrospun electrodes in commercial and research and development stage organic-solvent and ionic liquid (IL) based electrolytes. The majority of earlier published works stated various electrolytes with asymmetric cells of powder-based pressure-rolled (PTFE), or slurry-cast electrodes, were significantly different from the presented CDC-based fibrous spun electrodes. The benefits of the fibrous structure are relatively low thickness (20 µm), flexibility and mechanical durability. Thin-layered durable electrode materials are gaining more interest and importance in mechanically more demanding applications such as the space industry and in wearable devices, and need to achieve a targeted balance between mechanical, electrical and electrochemical properties. The existing commercial electrode technologies lack compatibility in such applications due to their limited mechanical properties and high cost. The test results showed that the widest potential window dU ≤ 3.5 V was achieved in 1.5 M 1-ethyl-3-methylimidazoliumbis(trifluoromethyl-sulfonyl)imide (EMIm-TFSI) solution in acetonitrile (ACN). Gravimetric capacitance reached 105.6 F g−1 for the positively charged electrode. Cycle-life results revealed stable material capacitance and resistance over 3000 cycles. Full article
(This article belongs to the Special Issue Carbide Derived Carbons)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop