ijms-logo

Journal Browser

Journal Browser

Biodegradable Materials

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Green Chemistry".

Deadline for manuscript submissions: closed (30 September 2014) | Viewed by 153927

Special Issue Editors


E-Mail Website
Guest Editor
The School of Computing, Engineering and Physical Sciences, University of the West of Scotland (UWS), Glasgow G72 0LH, UK
Interests: biodegradable materials; food processing; high pressure processing of foods
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes CEDEX 7, France
Interests: biobased polymers; biodegradable polymers; polymer characterisation; formulation; plasticisation; size exclusion chromatography; protein based materials; by-products; non-food uses of agricultural products; protein based packaging materials; polyesters; polyhydroxyalkanoates; PHB; PHBV; oils and epoxidized oils; exsudation and extraction; permeability (O2 , CO2, water vapour...)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

During the last 30 years, the development of natural biodegradable polymers has attached significant and increasing scientific and industrial attention particularly in terms of meeting the growing demand for sustainable development. Environmentally friendly polymer materials obtained from natural polymers such as proteins, polysaccharides, lipids or through synthesis from renewable resources have received considerable attention in an effort to replace petroleum-derived polymers with macromolecules whose ecological footprints is relatively low. The special issue of International Journal of Material Science will focus on such new biomaterials, and we are seeking contributions underlying the recent findings in the field of biodegradable/bio-based materials and their applications.

Professor Carl Schaschke
Dr. Jean-Luc Audic
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-based plastics and polymers
  • biodegradability
  • product uses
  • applications
  • materials testing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (25 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

632 KiB  
Editorial
Editorial: Biodegradable Materials
by Carl Schaschke and Jean-Luc Audic
Int. J. Mol. Sci. 2014, 15(11), 21468-21475; https://doi.org/10.3390/ijms151121468 - 21 Nov 2014
Cited by 16 | Viewed by 7128
Abstract
This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food [...] Read more.
This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment. Full article
(This article belongs to the Special Issue Biodegradable Materials)

Research

Jump to: Editorial, Review

9923 KiB  
Article
UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi
by Gabriela Albara Lando, Letícia Marconatto, Felipe Kessler, William Lopes, Augusto Schrank, Marilene Henning Vainstein and Daniel Eduardo Weibel
Int. J. Mol. Sci. 2017, 18(7), 1536; https://doi.org/10.3390/ijms18071536 - 18 Jul 2017
Cited by 13 | Viewed by 7445
Abstract
Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic [...] Read more.
Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

3232 KiB  
Article
Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards
by Evelien Uitterhaegen, Laurent Labonne, Othmane Merah, Thierry Talou, Stéphane Ballas, Thierry Véronèse and Philippe Evon
Int. J. Mol. Sci. 2017, 18(7), 1539; https://doi.org/10.3390/ijms18071539 - 17 Jul 2017
Cited by 32 | Viewed by 6454
Abstract
The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside [...] Read more.
The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

6108 KiB  
Article
Anti-Biofilm Effect of Biodegradable Coatings Based on Hemibastadin Derivative in Marine Environment
by Tiffany Le Norcy, Hendrik Niemann, Peter Proksch, Isabelle Linossier, Karine Vallée-Réhel, Claire Hellio and Fabienne Faÿ
Int. J. Mol. Sci. 2017, 18(7), 1520; https://doi.org/10.3390/ijms18071520 - 13 Jul 2017
Cited by 21 | Viewed by 6255
Abstract
Dibromohemibastadin-1 (DBHB) is an already known potent inhibitor of blue mussel phenoloxidase (which is a key enzyme involved in bioadhesion). Within this study, the potentiality of DBHB against microfouling has been investigated. The activity of DBHB was evaluated on key strains of bacteria [...] Read more.
Dibromohemibastadin-1 (DBHB) is an already known potent inhibitor of blue mussel phenoloxidase (which is a key enzyme involved in bioadhesion). Within this study, the potentiality of DBHB against microfouling has been investigated. The activity of DBHB was evaluated on key strains of bacteria and microalgae involved in marine biofilm formation and bioassays assessing impact on growth, adhesion and biofilm formation were used. To assess the efficiency of DBHB when included in a matrix, DBHB varnish was prepared and the anti-microfouling activity of coatings was assessed. Both in vitro and in situ immersions were carried out. Confocal Laser Scanning Microscopy (CLSM) was principally used to determine the biovolume and average thickness of biofilms developed on the coatings. Results showed an evident efficiency of DBHB as compound and varnish to reduce the biofilm development. The mode of action seems to be based principally on a perturbation of biofilm formation rather than on a biocidal activity in the tested conditions. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

1168 KiB  
Article
Synthesis and Biodegradation of Poly(l-lactide-co-β-propiolactone)
by Yuushou Nakayama, Kazuki Aihara, Zhengguo Cai, Takeshi Shiono and Chikara Tsutsumi
Int. J. Mol. Sci. 2017, 18(6), 1312; https://doi.org/10.3390/ijms18061312 - 20 Jun 2017
Cited by 13 | Viewed by 5741
Abstract
Although the copolymerizations of l-lactide (LA) with seven- or six-membered ring lactones have been extensively studied, the copolymerizations of LA with four-membered ring lactones have scarcely been reported. In this work, we studied the copolymerization of LA with β-propiolactone (PL) and the [...] Read more.
Although the copolymerizations of l-lactide (LA) with seven- or six-membered ring lactones have been extensively studied, the copolymerizations of LA with four-membered ring lactones have scarcely been reported. In this work, we studied the copolymerization of LA with β-propiolactone (PL) and the properties of the obtained copolymers. The copolymerization of LA with PL was carried out using trifluoromethanesulfonic acid as a catalyst and methanol as an initiator to produce poly(LA-co-PL) with Mn of ~50,000 and PL-content of 6–67 mol %. The Tg values of the copolymers were rapidly lowered with increasing PL-contents. The Tm and ΔHm of the copolymers gradually decreased with increasing PL-contents, indicating their decreased crystallinity. Biodegradation test of the copolymers in compost demonstrated their improved biodegradability in comparison with the homopolymer of LA. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

1430 KiB  
Article
Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles
by Inyoung Choi, Yoonjee Chang, So-Hyang Shin, Eunmi Joo, Hyun Ju Song, Haeyoung Eom and Jaejoon Han
Int. J. Mol. Sci. 2017, 18(6), 1278; https://doi.org/10.3390/ijms18061278 - 15 Jun 2017
Cited by 29 | Viewed by 5311
Abstract
Biopolymer films based on apple skin powder (ASP) and carboxymethylcellulose (CMC) were developed with the addition of apple skin extract (ASE) and tartaric acid (TA). ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle [...] Read more.
Biopolymer films based on apple skin powder (ASP) and carboxymethylcellulose (CMC) were developed with the addition of apple skin extract (ASE) and tartaric acid (TA). ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR), optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Figure 1

3079 KiB  
Article
Plasticizing Effects of Polyamines in Protein-Based Films
by Mohammed Sabbah, Prospero Di Pierro, C. Valeria L. Giosafatto, Marilena Esposito, Loredana Mariniello, Carlos Regalado-Gonzales and Raffaele Porta
Int. J. Mol. Sci. 2017, 18(5), 1026; https://doi.org/10.3390/ijms18051026 - 10 May 2017
Cited by 19 | Viewed by 4772
Abstract
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer [...] Read more.
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

1630 KiB  
Article
Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998
by Adriana Ferreira Souza, Dayana M. Rodriguez, Daylin R. Ribeaux, Marcos A. C. Luna, Thayse A. Lima e Silva, Rosileide F. Silva Andrade, Norma B. Gusmão and Galba M. Campos-Takaki
Int. J. Mol. Sci. 2016, 17(10), 1608; https://doi.org/10.3390/ijms17101608 - 23 Sep 2016
Cited by 29 | Viewed by 6595
Abstract
Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce [...] Read more.
Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

4735 KiB  
Article
Protection of Historical Wood against Microbial Degradation—Selection and Application of Microbiocides
by Anna Koziróg, Katarzyna Rajkowska, Anna Otlewska, Małgorzata Piotrowska, Alina Kunicka-Styczyńska, Bogumił Brycki, Paulina Nowicka-Krawczyk, Marta Kościelniak and Beata Gutarowska
Int. J. Mol. Sci. 2016, 17(8), 1364; https://doi.org/10.3390/ijms17081364 - 22 Aug 2016
Cited by 20 | Viewed by 6567
Abstract
The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride [...] Read more.
The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%–2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2—6% solution; Rocima 101—8%; Preventol R 80—12%; Acticide 706 LV—15% and Boramon—30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

1770 KiB  
Communication
Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure
by Diana Fimbres-Olivarría, José Antonio López-Elías, Elizabeth Carvajal-Millán, Jorge Alberto Márquez-Escalante, Luis Rafael Martínez-Córdova, Anselmo Miranda-Baeza, Fernando Enríquez-Ocaña, José Eduardo Valdéz-Holguín and Francisco Brown-Bojórquez
Int. J. Mol. Sci. 2016, 17(8), 1238; https://doi.org/10.3390/ijms17081238 - 30 Jul 2016
Cited by 22 | Viewed by 6870
Abstract
A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This [...] Read more.
A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl3, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Figure 1

2285 KiB  
Article
The Influence of Green Surface Modification of Oil Palm Mesocarp Fiber by Superheated Steam on the Mechanical Properties and Dimensional Stability of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite
by Yoon Yee Then, Nor Azowa Ibrahim, Norhazlin Zainuddin, Hidayah Ariffin, Wan Md Zin Wan Yunus and Buong Woei Chieng
Int. J. Mol. Sci. 2014, 15(9), 15344-15357; https://doi.org/10.3390/ijms150915344 - 29 Aug 2014
Cited by 25 | Viewed by 6755
Abstract
In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried [...] Read more.
In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200–230 °C) and time (30–120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Figure 1

4934 KiB  
Article
The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid)/Oil Palm Empty Fruit Bunch Fiber Composites
by Marwah Rayung, Nor Azowa Ibrahim, Norhazlin Zainuddin, Wan Zuhainis Saad, Nur Inani Abdul Razak and Buong Woei Chieng
Int. J. Mol. Sci. 2014, 15(8), 14728-14742; https://doi.org/10.3390/ijms150814728 - 22 Aug 2014
Cited by 88 | Viewed by 11191
Abstract
In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in [...] Read more.
In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Figure 1

3074 KiB  
Article
Synthesis and Properties of Poly(l-lactide)-b-poly (l-phenylalanine) Hybrid Copolymers
by Marc Planellas and Jordi Puiggalí
Int. J. Mol. Sci. 2014, 15(8), 13247-13266; https://doi.org/10.3390/ijms150813247 - 29 Jul 2014
Cited by 9 | Viewed by 8586
Abstract
Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine) copolymers with various [...] Read more.
Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine) copolymers with various block lengths were synthesized by sequential ring-opening polymerization of l-lactide and the N-carboxyanhydride of l-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing the successful incorporation of the polyphenylalanine (PPhe) peptide into the previously formed poly(l-lactide) (PLLA) polymer chain. X-ray diffraction and DSC data also suggested that the copolymers were phase-separated in domains containing either crystalline PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric analysis when polyphenylalanine blocks were incorporated into polylactide. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

1315 KiB  
Article
Crosslinking Liposomes/Cells Using Cholesteryl Group-Modified Tilapia Gelatin
by Tetsushi Taguchi and Yoshiaki Endo
Int. J. Mol. Sci. 2014, 15(7), 13123-13134; https://doi.org/10.3390/ijms150713123 - 23 Jul 2014
Cited by 11 | Viewed by 6650
Abstract
Cholesteryl group-modified tilapia gelatins (Chol-T-Gltns) with various Chol contents from 3 to 69 mol % per amino group of Gltn were prepared for the assembly of liposomes and cells. Liposomes were physically crosslinked by anchoring Chol groups of Chol-T-Gltns into lipid membranes. The [...] Read more.
Cholesteryl group-modified tilapia gelatins (Chol-T-Gltns) with various Chol contents from 3 to 69 mol % per amino group of Gltn were prepared for the assembly of liposomes and cells. Liposomes were physically crosslinked by anchoring Chol groups of Chol-T-Gltns into lipid membranes. The resulting liposome gels were enzymatically degraded by addition of collagenase. Liposome gels prepared using Chol-T-Gltn with high Chol content (69Chol-T-Gltn) showed slower enzymatic degradation when compared with gels prepared using Chol-T-Gltn with low Chol content (3Chol-T-Gltn). The hepatocyte cell line HepG2 showed good assembly properties and no cytotoxic effects after addition of 69Chol-T-Gltns. In addition, the number of HepG2 cells increased with concentration of 69Chol-T-Gltns. Therefore, Chol-T-Gltn, particularly, 69Chol-T-Gltn, can be used as an assembling material for liposomes and various cell types. The resulting organization can be applied to various biomedical fields, such as drug delivery systems, tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Figure 1

689 KiB  
Article
Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly(vinyl alcohol)/Chitosan Blend Films: Fabrication, Characterization and Properties
by Susan Azizi, Mansor B. Ahmad, Nor Azowa Ibrahim, Mohd Zobir Hussein and Farideh Namvar
Int. J. Mol. Sci. 2014, 15(6), 11040-11053; https://doi.org/10.3390/ijms150611040 - 18 Jun 2014
Cited by 96 | Viewed by 12013
Abstract
In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial [...] Read more.
In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Figure 1

1780 KiB  
Article
Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties
by Ana M. Díez-Pascual and Angel L. Díez-Vicente
Int. J. Mol. Sci. 2014, 15(6), 10950-10973; https://doi.org/10.3390/ijms150610950 - 17 Jun 2014
Cited by 225 | Viewed by 11257
Abstract
Poly(3-hydroxybutyrate) (PHB)-based bionanocomposites incorporating different contents of ZnO nanoparticles were prepared via solution casting technique. The nanoparticles were dispersed within the biopolymer without the need for surfactants or coupling agents. The morphology, thermal, mechanical, barrier, migration and antibacterial properties of the nanocomposites were [...] Read more.
Poly(3-hydroxybutyrate) (PHB)-based bionanocomposites incorporating different contents of ZnO nanoparticles were prepared via solution casting technique. The nanoparticles were dispersed within the biopolymer without the need for surfactants or coupling agents. The morphology, thermal, mechanical, barrier, migration and antibacterial properties of the nanocomposites were investigated. The nanoparticles acted as nucleating agents, increasing the crystallization temperature and the degree of crystallinity of the matrix, and as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process, leading to higher thermal stability. The Young’s modulus, tensile and impact strength of the biopolymer were enhanced by up to 43%, 32% and 26%, respectively, due to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions, as revealed by the FT-IR spectra. Moreover, the nanocomposites exhibited reduced water uptake and superior gas and vapour barrier properties compared to neat PHB. They also showed antibacterial activity against both Gram-positive and Gram-negative bacteria, which was progressively improved upon increasing ZnO concentration. The migration levels of PHB/ZnO composites in both non-polar and polar simulants decreased with increasing nanoparticle content, and were well below the current legislative limits for food packaging materials. These biodegradable nanocomposites show great potential as an alternative to synthetic plastic packaging materials especially for use in food and beverage containers and disposable applications. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

2224 KiB  
Article
A pH and Redox Dual Responsive 4-Arm Poly(ethylene glycol)-block-poly(disulfide histamine) Copolymer for Non-Viral Gene Transfection in Vitro and in Vivo
by Kangkang An, Peng Zhao, Chao Lin and Hongwei Liu
Int. J. Mol. Sci. 2014, 15(5), 9067-9081; https://doi.org/10.3390/ijms15059067 - 21 May 2014
Cited by 18 | Viewed by 8717
Abstract
A novel 4-arm poly(ethylene glycol)-b-poly(disulfide histamine) copolymer was synthesized by Michael addition reaction of poly(ethylene glycol) (PEG) vinyl sulfone and amine-capped poly(disulfide histamine) oligomer, being denoted as 4-arm PEG-SSPHIS. This copolymer was able to condense DNA into nanoscale polyplexes (<200 nm in average [...] Read more.
A novel 4-arm poly(ethylene glycol)-b-poly(disulfide histamine) copolymer was synthesized by Michael addition reaction of poly(ethylene glycol) (PEG) vinyl sulfone and amine-capped poly(disulfide histamine) oligomer, being denoted as 4-arm PEG-SSPHIS. This copolymer was able to condense DNA into nanoscale polyplexes (<200 nm in average diameter) with almost neutral surface charge (+(5–10) mV). Besides, these polyplexes were colloidal stable within 4 h in HEPES buffer saline at pH 7.4 (physiological environment), but rapidly dissociated to liberate DNA in the presence of 10 mM glutathione (intracellular reducing environment). The polyplexes also revealed pH-responsive surface charges which markedly increased with reducing pH values from 7.4–6.3 (tumor microenvironment). In vitro transfection experiments showed that polyplexes of 4-arm PEG-SSPHIS were capable of exerting enhanced transfection efficacy in MCF-7 and HepG2 cancer cells under acidic conditions (pH 6.3–7.0). Moreover, intravenous administration of the polyplexes to nude mice bearing HepG2-tumor yielded high transgene expression largely in tumor rather other normal organs. Importantly, this copolymer and its polyplexes had low cytotoxicity against the cells in vitro and caused no death of the mice. The results of this study indicate that 4-arm PEG-SSPHIS has high potential as a dual responsive gene delivery vector for cancer gene therapy. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

6985 KiB  
Article
Three-Dimensional Microstructural Properties of Nanofibrillated Cellulose Films
by Arttu Miettinen, Gary Chinga-Carrasco and Markku Kataja
Int. J. Mol. Sci. 2014, 15(4), 6423-6440; https://doi.org/10.3390/ijms15046423 - 16 Apr 2014
Cited by 33 | Viewed by 7673
Abstract
Nanofibrillated cellulose (NFC) films have potential as oxygen barriers for, e.g., food packaging applications, but their use is limited by their hygroscopic characteristics. The three-dimensional microstructure of NFC films made of Pinus radiata (Radiata Pine) kraft pulp fibres has been assessed in this [...] Read more.
Nanofibrillated cellulose (NFC) films have potential as oxygen barriers for, e.g., food packaging applications, but their use is limited by their hygroscopic characteristics. The three-dimensional microstructure of NFC films made of Pinus radiata (Radiata Pine) kraft pulp fibres has been assessed in this study, considering the structural development as a function of relative humidity (RH). The surface roughness, micro-porosity, thickness and their correlations were analyzed using X-ray microtomography (X–μCT) and computerized image analysis. The results are compared to those from scanning electron microscopy and laser profilometry. Based on a series of films having varying amounts of 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidated nanofibrils, it was demonstrated that X–μCT is suitable for assessing the surface and bulk 3D microstructure of the cellulose films. Additionally, one of the series was assessed at varying humidity levels, using the non-destructive capabilities of X–μCT and a newly developed humidity chamber for in-situ characterization. The oxygen transmission rate (OTR) of the films (20 g=m2) was below 3:7mLm-2 day-1 at humidity levels below 60% RH. However, the OTR increased considerably to 12:4mLm-2 day-1 when the humidity level increased to 80% RH. The increase in OTR was attributed to a change of the film porosity, which was reflected as an increase in local thickness. Hence, the characterization techniques applied in this study shed more light on the structures of NFC films and how they are affected by varying humidity levels. It was demonstrated that in increasing relative humidity the films swelled and the oxygen barrier properties decreased. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

3344 KiB  
Article
Poly(lactide-co-trimethylene carbonate) and Polylactide/Polytrimethylene Carbonate Blown Films
by Hongli Li, Jiangping Chang, Yuyue Qin, Yan Wu, Minglong Yuan and Yingjie Zhang
Int. J. Mol. Sci. 2014, 15(2), 2608-2621; https://doi.org/10.3390/ijms15022608 - 14 Feb 2014
Cited by 16 | Viewed by 9174
Abstract
In this work, poly(lactide-co-trimethylene carbonate) and polylactide/ polytrimethylene carbonate films are prepared using a film blowing method. The process parameters, including temperature and screw speed, are studied, and the structures and properties of the P(LA-TMC) and PLA/PTMC films are investigated. The [...] Read more.
In this work, poly(lactide-co-trimethylene carbonate) and polylactide/ polytrimethylene carbonate films are prepared using a film blowing method. The process parameters, including temperature and screw speed, are studied, and the structures and properties of the P(LA-TMC) and PLA/PTMC films are investigated. The scanning electron microscope (SEM) images show that upon improving the content of TMC and PTMC, the lamellar structures of the films are obviously changed. With increasing TMC monomer or PTMC contents, the elongation at the break is improved, and the maximum is up to 525%. The water vapor permeability (WVP) results demonstrate that the WVP of the PLA/PTMC film increased with the increase in the PTMC content, whereas the WVP of the P(LA-TMC) film decreased. Thermogravimetric (TG) measurements reveal that the decomposition temperatures of the P(LA-TMC) and PLA/PTMC films decrease with increases in the TMC and PTMC contents, respectively, but the processing temperature is significantly lower than the initial decomposition temperature. P(LA-TMC) or PLA/PTMC film can extend the shelf life of apples, for instance, like commercial LDPE film used in fruit packaging in supermarkets. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

5009 KiB  
Review
Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review
by Min A. Bag and Loreto M. Valenzuela
Int. J. Mol. Sci. 2017, 18(8), 1422; https://doi.org/10.3390/ijms18081422 - 3 Aug 2017
Cited by 95 | Viewed by 9859
Abstract
Water has a key role in the functioning of all biological systems, it mediates many biochemical reactions, as well as other biological activities such as material biocompatibility. Water is often considered as an inert solvent, however at the molecular level, it shows different [...] Read more.
Water has a key role in the functioning of all biological systems, it mediates many biochemical reactions, as well as other biological activities such as material biocompatibility. Water is often considered as an inert solvent, however at the molecular level, it shows different behavior when sorbed onto surfaces like polymeric implants. Three states of water have been recognized: non-freezable water, which does not freeze even at −100 °C; intermediate water, which freezes below 0 °C; and, free water, which freezes at 0 °C like bulk water. This review describes the different states of water and the techniques for their identification and quantification, and analyzes their relationship with hemocompatibility in polymer surfaces. Intermediate water content higher than 3 wt % is related to better hemocompatibility for poly(ethylene glycol), poly(meth)acrylates, aliphatic carbonyls, and poly(lactic-co-glycolic acid) surfaces. Therefore, characterizing water states in addition to water content is key for polymer selection and material design for medical applications. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

1341 KiB  
Review
The Ultimaster Biodegradable-Polymer Sirolimus-Eluting Stent: An Updated Review of Clinical Evidence
by Alberto Chisari, Anna Maria Pistritto, Raffaele Piccolo, Alessio La Manna and Gian Battista Danzi
Int. J. Mol. Sci. 2016, 17(9), 1490; https://doi.org/10.3390/ijms17091490 - 6 Sep 2016
Cited by 42 | Viewed by 8931
Abstract
The Ultimaster coronary stent system (Terumo Corporation, Tokyo, Japan) represents a new iteration in drug-eluting stent (DES) technology that has recently received the Conformité Européenne (CE) mark approval for clinical use. The Ultimaster is a thin-strut, cobalt chromium, biodegradable-polymer, sirolimus-eluting coronary stent. The [...] Read more.
The Ultimaster coronary stent system (Terumo Corporation, Tokyo, Japan) represents a new iteration in drug-eluting stent (DES) technology that has recently received the Conformité Européenne (CE) mark approval for clinical use. The Ultimaster is a thin-strut, cobalt chromium, biodegradable-polymer, sirolimus-eluting coronary stent. The high elasticity of the biodegradable-polymer (PDLLA-PCL) and the abluminal gradient coating technology are additional novel features of this coronary device. The Ultimaster DES has undergone extensive clinical evaluation in two studies: The CENTURY I and II trials. Results from these two landmark studies suggested an excellent efficacy and safety profile of the Ultimaster DES across several lesion and patient subsets, with similar clinical outcomes to contemporary, new-generation DES. The aim of this review is to summarize the rationale behind this novel DES technology and to provide an update of available evidence about the clinical performance of the Ultimaster DES. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Figure 1

1571 KiB  
Review
Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery
by Guozhan Jiang, David J. Hill, Marek Kowalczuk, Brian Johnston, Grazyna Adamus, Victor Irorere and Iza Radecka
Int. J. Mol. Sci. 2016, 17(7), 1157; https://doi.org/10.3390/ijms17071157 - 19 Jul 2016
Cited by 184 | Viewed by 12774
Abstract
Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for [...] Read more.
Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

2597 KiB  
Review
Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development
by Joanna Rydz, Wanda Sikorska, Mariya Kyulavska and Darinka Christova
Int. J. Mol. Sci. 2015, 16(1), 564-596; https://doi.org/10.3390/ijms16010564 - 29 Dec 2014
Cited by 232 | Viewed by 23527
Abstract
This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are [...] Read more.
This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Figure 1

2224 KiB  
Review
Recent Advances in Food-Packing, Pharmaceutical and Biomedical Applications of Zein and Zein-Based Materials
by Elisângela Corradini, Priscila S. Curti, Adriano B. Meniqueti, Alessandro F. Martins, Adley F. Rubira and Edvani Curti Muniz
Int. J. Mol. Sci. 2014, 15(12), 22438-22470; https://doi.org/10.3390/ijms151222438 - 4 Dec 2014
Cited by 231 | Viewed by 15701
Abstract
Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that [...] Read more.
Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that the biodegradation and biocompatibility of zein are key parameters for its uses in the food-packing, biomedical and pharmaceutical fields. Furthermore, it was pointed out that the presence of hydrophilic-hydrophobic groups in zein chains is a very important aspect for obtaining material with different hydrophobicities by mixing with other moieties (polymeric or not), but also for obtaining derivatives with different properties. The physical and chemical characteristics and special structure (at the molecular, nano and micro scales) make zein molecules inherently superior to many other polymers from natural sources and synthetic ones. The film-forming property of zein and zein-based materials is important for several applications. The good electrospinnability of zein is important for producing zein and zein-based nanofibers for applications in tissue engineering and drug delivery. The use of zein’s hydrolysate peptides for reducing blood pressure is another important issue related to the application of derivatives of zein in the biomedical field. It is pointed out that the biodegradability and biocompatibility of zein and other inherent properties associated with zein’s structure allow a myriad of applications of such materials with great potential in the near future. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

3012 KiB  
Review
Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s
by Angélica Díaz, Ramaz Katsarava and Jordi Puiggalí
Int. J. Mol. Sci. 2014, 15(5), 7064-7123; https://doi.org/10.3390/ijms15057064 - 25 Apr 2014
Cited by 207 | Viewed by 23432
Abstract
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status [...] Read more.
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

Back to TopTop