Next Issue
Volume 9, July
Previous Issue
Volume 9, May
 
 
polymers-logo

Journal Browser

Journal Browser

Polymers, Volume 9, Issue 6 (June 2017) – 55 articles

Cover Story (view full-size image): This paper reports the principal discoveries which have played a major role in the polyolefin field and have positioned polyolefins as the most produced plastics. The early development of polyolefins covering the production of LDPE at ICI and the discovery of Phillips or Ziegler-Natta catalysts are highlighted in a first section. In a second part the impact of the implementation of molecular catalysts on the research in polyolefins is discussed together with the last advances leading to high performance tailor made resins. View the paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
0 pages, 8306 KiB  
Article
RETRACTED: Controlled Light Cross-Linking Technique to Prepare Healable Materials
by Soliman Abdalla, Fahad Al-Marzouki, Abdullah Obaid and Fatma Bahabri
Polymers 2017, 9(6), 241; https://doi.org/10.3390/polym9060241 - 21 Jun 2017
Cited by 1 | Viewed by 6677 | Retraction
Abstract
Detection of defects, damages and cracks in structural polymers is very difficult, and even if they are detected, they will be very hard to be repaired. This is because different kinds of stress can reduce the mechanical efficiency of structural and functional thermosetting [...] Read more.
Detection of defects, damages and cracks in structural polymers is very difficult, and even if they are detected, they will be very hard to be repaired. This is because different kinds of stress can reduce the mechanical efficiency of structural and functional thermosetting composite materials and they can damage the polymer matrix, thus reducing the purposed properties. General healing processes use thermal energy “alone” to heal these materials, thus impairing the intended properties of the materials. Therefore, we present a thermal healing ability that can be switched-on and/or -off at desire using illumination by photon energy (visible and ultra violet). By this technique, one can control local heal while keeping the efficiency of the material nearly unchanged. Furan-based cross-linker chemically reacts (forward- and reverse-reaction) with short-chains of maleimide-substituted poly(lauryl methacrylate) to form robust chemical bonds. This permits us to perform local control over thermally induced de- and/or re-cross-linking techniques. One can extend and apply this technique to cover micro-devices, coating-techniques, fine lithography, micro- and nano-fabrication processes, etc. Therefore, the present work developed a suitable technology with structural polymeric material, which has the ability to self-heal cracks (and damages) and recover structural function. Full article
(This article belongs to the Collection Polymeric Adhesives)
Show Figures

Figure 1

4990 KiB  
Review
Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review
by Chongbo Cheng, Jinzhi Wang, Dekui Shen, Jiangtao Xue, Sipian Guan, Sai Gu and Kai Hong Luo
Polymers 2017, 9(6), 240; https://doi.org/10.3390/polym9060240 - 21 Jun 2017
Cited by 81 | Viewed by 11330
Abstract
Lignin as the most abundant source of aromatic chemicals in nature has attracted a great deal of attention in both academia and industry. Solvolysis is one of the promising methods to convert lignin to a number of petroleum-based aromatic chemicals. The process involving [...] Read more.
Lignin as the most abundant source of aromatic chemicals in nature has attracted a great deal of attention in both academia and industry. Solvolysis is one of the promising methods to convert lignin to a number of petroleum-based aromatic chemicals. The process involving the depolymerization of the lignin macromolecule and repolymerization of fragments is complicated influenced by heating methods, reaction conditions, presence of a catalyst and solvent systems. Recently, numerous investigations attempted unveiling the inherent mechanism of this process in order to promote the production of valuable aromatics. Oxidative solvolysis of lignin can produce a number of the functionalized monomeric or oligomeric chemicals. A number of research groups should be greatly appreciated with regard to their contributions on the following two concerns: (1) the cracking mechanism of inter-unit linkages during the oxidative solvolysis of lignin; and (2) the development of novel catalysts for oxidative solvolysis of lignin and their performance. Investigations on lignin oxidative solvolysis are extensively overviewed in this work, concerning the above issues and the way-forward for lignin refinery. Full article
Show Figures

Graphical abstract

5102 KiB  
Article
Preparation of Pendant Group-Functionalized Diblock Copolymers with Adjustable Thermogelling Behavior
by Bo Keun Lee, Ji Hoon Park, Seung Hun Park, Jae Ho Kim, Se Heang Oh, Sang Jin Lee, Bun Yeoul Lee and Moon Suk Kim
Polymers 2017, 9(6), 239; https://doi.org/10.3390/polym9060239 - 20 Jun 2017
Cited by 6 | Viewed by 7267
Abstract
Recently, several thermogelling materials have been developed for biomedical applications. In this study, we prepared methoxy polyethylene glycol (MPEG)-b-(poly(ε-caprolactone)-ran-poly(2-chloride-ε-caprolactone) (PCL-ran-PfCL)) (MP-Cl) diblock copolymers at room temperature via the ring-opening polymerization of caprolactone (CL) [...] Read more.
Recently, several thermogelling materials have been developed for biomedical applications. In this study, we prepared methoxy polyethylene glycol (MPEG)-b-(poly(ε-caprolactone)-ran-poly(2-chloride-ε-caprolactone) (PCL-ran-PfCL)) (MP-Cl) diblock copolymers at room temperature via the ring-opening polymerization of caprolactone (CL) and 2-chloride-ε-caprolactone (fCL) monomers, using the terminal alcohol of MPEG as the initiator in the presence of HCl. MPEG-b-(poly(ε-caprolactone)-ran-poly(2-azide-ε-caprolactone) (PCL-ran-PCL-N3)) (MP-N3) was prepared by the reaction of MP-Cl with sodium azide. MPEG-b-(poly(ε-caprolactone)-ran-poly(2-amine-ε-caprolactone) (PCL-ran-PCL-NH2)) (MP-NH2) was subsequently prepared by Staudinger reaction. MP-Cl and MP-N3 showed negative zeta potentials, but MP-NH2 had a positive zeta potential. MP-Cl, MP-N3, and MP-NH2 solutions formed opaque emulsions at room temperature. The solutions exhibited a solution-to-hydrogel phase transition as a function of the temperature and were affected by variation of the chloride, azide, and the amine pendant group, as well as the amount of pendant groups present in their structure. Additionally, the phase transition of MP-Cl, MP-N3, and MP-NH2 copolymers was altered by pendant groups. The solution-to-hydrogel phase transition was adjusted by tailoring the crystallinity and hydrophobicity of the copolymers in aqueous solutions. Collectively, MP-Cl, MP-N3, and MP-NH2 with various pendant-group contents in the PCL segment showed a solution-to-hydrogel phase transition that depended on both the type of pendant groups and their content. Full article
Show Figures

Graphical abstract

1683 KiB  
Communication
A Near-Infrared Light-Responsive Hybrid Hydrogel Based on UCST Triblock Copolymer and Gold Nanorods
by Hu Zhang, Shengwei Guo, Shangyi Fu and Yue Zhao
Polymers 2017, 9(6), 238; https://doi.org/10.3390/polym9060238 - 20 Jun 2017
Cited by 51 | Viewed by 10526
Abstract
We report a near-infrared (NIR) light-responsive hydrogel that is capable of undergoing the gel to sol transition upon 785 nm light exposure based on a photothermal effect. The new hydrogel design relies on loading gold nanorods (AuNRs) in an ABA-type triblock copolymer, namely [...] Read more.
We report a near-infrared (NIR) light-responsive hydrogel that is capable of undergoing the gel to sol transition upon 785 nm light exposure based on a photothermal effect. The new hydrogel design relies on loading gold nanorods (AuNRs) in an ABA-type triblock copolymer, namely P(AAm–co–AN)–b–PDMA–b–P(AAm–co–AN), where P(AAm–co–AN) stands for a random copolymer of acrylamide and acrylonitrile that exhibits an upper critical solution temperature (UCST) in aqueous solution and PDMA is water-soluble polydimethylacrylamide. At solution temperature below UCST, the insoluble P(AAm–co–AN) blocks lead to formation of hydrogel of flower-like micelles. When the hydrogel is exposed to 785 nm NIR light, the absorption due to the longitudinal surface plasmon resonance of loaded AuNRs generates heat that raises the hydrogel temperature above UCST and, consequently, the gel-to-sol transition. The NIR light-triggered release of a protein loaded in the hydrogel was found to display a switchable fashion. Full article
(This article belongs to the Special Issue Photo-Responsive Polymers)
Show Figures

Graphical abstract

4489 KiB  
Article
Design and Fabrication of Bilayer Hydrogel System with Self-Healing and Detachment Properties Achieved by Near-Infrared Irradiation
by Qian Zhao, Wenhua Hou, Yunhong Liang, Zhihui Zhang and Luquan Ren
Polymers 2017, 9(6), 237; https://doi.org/10.3390/polym9060237 - 20 Jun 2017
Cited by 7 | Viewed by 6267
Abstract
A novel kind of graphene oxide (GO)-containing bilayer hydrogel system with excellent self-healing and detachment properties stimulated by near-infrared irradiation is successively fabricated via a two-step in situ free radical polymerization. In addition to high mechanical strength, as components of a bilayer hydrogel [...] Read more.
A novel kind of graphene oxide (GO)-containing bilayer hydrogel system with excellent self-healing and detachment properties stimulated by near-infrared irradiation is successively fabricated via a two-step in situ free radical polymerization. In addition to high mechanical strength, as components of a bilayer hydrogel system, a poly N,N-dimethylacrylamide (PDMAA) layer with 3 mg/mL GO and a poly N-isopropylacrylamide (PNIPAm) layer with 3 mg/mL GO exhibits firm interface bonding. GO in a PDMAA layer transforms under a near-infrared laser into heat, which promotes mutual diffusion of hydrogen bonds and realizes a self-healing property. The irradiation of near infrared laser results in the temperature of PNIPAm layer being higher than the volume phase transition temperature, reducing the corresponding biological viscidity and achieving detachment property. The increase of GO content enhances the self-healing degree and detachment rate. The bilayer hydrogel system fabricated via mold design combines characteristics of PDMAA layer and PNIPAm layer, which can be treated as materials for medical dressings, soft actuators, and robots. Full article
Show Figures

Graphical abstract

6323 KiB  
Article
Isothermal and Non-Isothermal Crystallization Studies of Long Chain Branched Polypropylene Containing Poly(ethylene-co-octene) under Quiescent and Shear Conditions
by Zinan Zhang, Fengyuan Yu and Hongbin Zhang
Polymers 2017, 9(6), 236; https://doi.org/10.3390/polym9060236 - 20 Jun 2017
Cited by 15 | Viewed by 6872
Abstract
Isothermal and non-isothermal crystallization behaviours of the blends of long chain branched polypropylene (LCB PP) and poly(ethylene-co-octene) (PEOc) with different weight ratios were studied under quiescent and shear flow using polarized optical microscopy (POM), differential scanning calorimetry (DSC), and rheological measurements. [...] Read more.
Isothermal and non-isothermal crystallization behaviours of the blends of long chain branched polypropylene (LCB PP) and poly(ethylene-co-octene) (PEOc) with different weight ratios were studied under quiescent and shear flow using polarized optical microscopy (POM), differential scanning calorimetry (DSC), and rheological measurements. Experimental results showed that the crystallization of the LCB PP/PEOc blends were significantly accelerated due to the existence of the long chain branches (LCBs), the blends being able to rapidly crystallize even at 146 °C. The addition of PEOc that acts as a nucleating agent, could also increase the crystallization rate of LCB PP. However, the crystallization rate of LCB PP was reduced when the PEOc concentration was more than 60 wt %, showing a retarded crystallization growth mechanism. The morphology of the binary blend was changed from a sea-island structure to a co-continuous phase structure when the PEOc concentration was increased from 40 to 60 wt %. In comparison with linear isotactic iPP/PEOc, the interfacial tension between LCB PP and PEOc was increased. In addition, flow-induced crystallization of LCB PP/PEOc blends was observed. Possible crystallization mechanisms for both LCB PP/PEOc and iPP/PEOc blends were proposed. Full article
(This article belongs to the Special Issue Olefin Polymerization and Polyolefin)
Show Figures

Figure 1

21923 KiB  
Article
Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers
by Bartolomeo Coppola, Paola Scarfato, Loredana Incarnato and Luciano Di Maio
Polymers 2017, 9(6), 235; https://doi.org/10.3390/polym9060235 - 20 Jun 2017
Cited by 25 | Viewed by 7171
Abstract
In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene [...] Read more.
In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE–g–MA) and an organomodified montmorillonite (Dellite 67G) at three different loadings (3, 5 and 10 wt %). Fibers were produced by a single-screw extruder and drawn at five draw ratios (DRs): 7.25, 10, 13.5, 16 and 19. All nanocomposites, characterized by XRD, SEM, TEM, and FT-IR techniques, showed an intercalated/exfoliated morphology. The study evidenced that the nanoclay presence significantly increases both elastic modulus (up to +115% for fibers containing 10 wt % of D67G) and drawability of as-spun nanocomposite fibers. Moreover, at fixed nanocomposite composition, the cold-drawing process increases fibers elastic modulus and tensile strength at increasing DRs. However, at high DRs, “face-to-edge” rearrangement phenomena of clay layers (i.e., clay layers tend to rotate and touch each other) arise in fibers at high nanoclay loadings. Finally, nanocomposite fibers show a lower diameter reduction during drawing, with respect to the plain system, and surface feature of adjustable roughness by controlling the composition and the drawing conditions. Full article
(This article belongs to the Special Issue Polymer Nanocomposites)
Show Figures

Graphical abstract

12131 KiB  
Article
Photo-Induced Vertical Alignment of Liquid Crystals via In Situ Polymerization Initiated by Polyimide Containing Benzophenone
by Fei Wang, Leishan Shao, Qiyao Bai, Xinyuan Che, Bin Liu and Yinghan Wang
Polymers 2017, 9(6), 233; https://doi.org/10.3390/polym9060233 - 18 Jun 2017
Cited by 10 | Viewed by 8660
Abstract
Vertical alignment of liquid crystal (LC) was achieved in an easy and effective way: in situ photopolymerization of dodecyl acrylate (DA) monomers initiated by polyimide based on 3,3′,4,4′-benzophenonetetracarboxylic dianhydride and 3,3′-dimethyl-4,4′-diaminodiphenyl methane (BTDA-DMMDA PI). The alignment behavior and alignment stabilities were characterized by [...] Read more.
Vertical alignment of liquid crystal (LC) was achieved in an easy and effective way: in situ photopolymerization of dodecyl acrylate (DA) monomers initiated by polyimide based on 3,3′,4,4′-benzophenonetetracarboxylic dianhydride and 3,3′-dimethyl-4,4′-diaminodiphenyl methane (BTDA-DMMDA PI). The alignment behavior and alignment stabilities were characterized by a polarizing optical microscope (POM), which showed a stable vertical alignment after 12 h of thermal treatment. The chemical structures, morphology, and water contact angles of alignment films peeled from LC cells with and without DA monomers were analyzed by means of a Fourier transform infrared spectrometer (FTIR), a scanning electron microscope (SEM), and a contact angle tester, separately. The results confirmed that the DA monomers underwent self-polymerization and grafting polymerization initiated by the BTDA-DMMDA PI under ultraviolet irradiation, which aggregated on the surfaces of PI films. The water contact angles of the alignment films were about 15° higher, indicating a relative lower surface energy. In conclusion, the vertical alignment of LC was introduced by the low surface free energy of PI films grafted with DA polymer and intermolecular interactions between LC and DA polymers. Full article
(This article belongs to the Special Issue Photo-Responsive Polymers)
Show Figures

Graphical abstract

3392 KiB  
Article
The Preparation and Characterization of Pyrolysis Bio-Oil-Resorcinol-Aldehyde Resin Cold-Set Adhesives for Wood Construction
by Xueyong Ren, Hongzhen Cai, Hongshuang Du and Jianmin Chang
Polymers 2017, 9(6), 232; https://doi.org/10.3390/polym9060232 - 18 Jun 2017
Cited by 23 | Viewed by 10370
Abstract
Resorcinol-formaldehyde (RF) resin is a kind of excellent exterior-grade wood structural adhesive, which can be conveniently cold-set for various applications. In order to decrease the production cost, pyrolysis bio-oil from renewable bioresources was used to replace resorcinol to synthesize the bio-oil-resorcinol-aldehyde (BRF) resin. [...] Read more.
Resorcinol-formaldehyde (RF) resin is a kind of excellent exterior-grade wood structural adhesive, which can be conveniently cold-set for various applications. In order to decrease the production cost, pyrolysis bio-oil from renewable bioresources was used to replace resorcinol to synthesize the bio-oil-resorcinol-aldehyde (BRF) resin. The effect of replacing resorcinol with bio-oil on the properties, bonding performance, and characterization of resorcinol-aldehyde resin was comparatively investigated. A higher solid content and viscosity, albeit a lower shear strength, was found when the replacement ratio of bio-oil increased. The bonding performance of BRF with 10 and 20 wt % bio-oil was close to that of the pure RF resin. However, the trends of being less cross-linked, more easily decomposed, but more porous were found when the substitution ratio of bio-oil was higher than 20 wt %. Interestingly, it was found that the wood failure values of the BRF resins with bio-oil of no more than 20 wt % were slightly higher than that of the pure RF resin. On the whole, BRF resins with 20 wt % bio-oil is recommended as a wood structural adhesive, comprehensively considering the bio-oil substitution ratio and resin properties. The results obtained here showed that pyrolysis bio-oil is a promising green raw material for the production of RF resin with lower cost. Full article
(This article belongs to the Collection Polymeric Adhesives)
Show Figures

Graphical abstract

2474 KiB  
Article
Synthesis of PNVP-Based Copolymers with Tunable Thermosensitivity by Sequential Reversible Addition–Fragmentation Chain Transfer Copolymerization and Ring-Opening Polymerization
by Yi-Shen Huang, Jem-Kun Chen, Tao Chen and Chih-Feng Huang
Polymers 2017, 9(6), 231; https://doi.org/10.3390/polym9060231 - 18 Jun 2017
Cited by 15 | Viewed by 7046
Abstract
Through the reversible addition–fragmentation chain transfer (RAFT) copolymerization of 3-ethyl-1-vinyl-2-pyrrolidone (C2NVP) and N-vinylpyrrolidone (NVP), a series of well-defined P(C2NVP-co-NVP) copolymers were synthesized (Mn = ca. 8000 to 16,000 and Mw/Mn <1.5) [...] Read more.
Through the reversible addition–fragmentation chain transfer (RAFT) copolymerization of 3-ethyl-1-vinyl-2-pyrrolidone (C2NVP) and N-vinylpyrrolidone (NVP), a series of well-defined P(C2NVP-co-NVP) copolymers were synthesized (Mn = ca. 8000 to 16,000 and Mw/Mn <1.5) by using a difunctional chain transfer agent, S-(1-methyl-4-hydroxyethyl acetate) O-ethyl xanthate (MHEX). Copolymerizing kinetics and different monomer ratio in feeds were conducted to study the apparent monomer reaction rate and reactivity ratios of NVP and C2NVP, which indicated similar reaction rates and predominantly ideal random copolymers for the two monomers. The Tgs of the obtaining P(C2NVP-co-NVP) copolymers significantly corresponded to not only molecular weights MWs but also copolymer compositions. These copolymers presented characteristic lower critical solution temperatures (LCST) behavior. We then studied the cloud points (CPs) of the copolymers with varying MWs and compositions. With different MWs, the CPs were linearly decreased from ca. 51 to 45 °C. With different compositions, the CPs of the copolymers decreased from ca. 48 to 29 °C with C2NVP content (i.e., from 60.8 to 89.9 mol %). Fitting the CPs by the theoretical equation, the result illustrated that the introduction of more hydrophobic units of C2NVP suppressed the hydrophilic interaction between the polymer chain and water. We then successfully proceeded the chain extension through the ring-opening polymerization (ROP) of ε-caprolactone (CL) to the synthesis of a novel P(C2NVP-co-NVP)-b-PCL amphiphilic block copolymer (Mn,NMR = 14,730 and Mw/Mn = 1.59). The critical micelle concentration (CMC) of the block copolymer had a value of ca. 1.46 × 10−4 g/L. The block copolymer micelle was traced by dynamic light scattering (DLS), obtaining thermosensitive behaviors with a particle size of ca. 240 nm at 25 °C and ca. 140 nm at 55 °C, respectively. Full article
(This article belongs to the Special Issue Functionally Responsive Polymeric Materials)
Show Figures

Graphical abstract

12718 KiB  
Article
Effect of Preparation Methods on the Tensile, Morphology and Solar Energy Conversion Efficiency of RGO/PMMA Nanocomposites
by Shin Yiing Kee, Yamuna Munusamy, Kok Seng Ong and Koon Chun Lai
Polymers 2017, 9(6), 230; https://doi.org/10.3390/polym9060230 - 18 Jun 2017
Cited by 9 | Viewed by 5489
Abstract
In this study, reduced graphene oxide (RGO)/polymethyl methacrylate (PMMA) nanocomposites were prepared by employing in situ polymerization and solution blending methods. In terms of mechanical properties, RGO loading increased the Young’s modulus but decreased the elongation at break for RGO/PMMA nanocomposites. Tensile strength [...] Read more.
In this study, reduced graphene oxide (RGO)/polymethyl methacrylate (PMMA) nanocomposites were prepared by employing in situ polymerization and solution blending methods. In terms of mechanical properties, RGO loading increased the Young’s modulus but decreased the elongation at break for RGO/PMMA nanocomposites. Tensile strength for solution blended RGO/PMMA nanocomposites increased after adding 0.5 wt % RGO, which was attributed to the good dispersion of RGO in the nanocomposites as evidenced from SEM and TEM. Solar energy conversion efficiency measurement results showed that the optimum concentration of RGO in the RGO/PMMA nanocomposites was found to be 1.0 wt % in order to achieve the maximum solar energy conversion efficiency of 25%. In the present study, the solution blended nanocomposites exhibited better overall properties than in situ polymerized nanocomposites owing to the better dispersion of RGO in solution blending. These findings would contribute to future work in search of higher conversion efficiency using nanocomposites. Full article
Show Figures

Figure 1

7319 KiB  
Article
Pattern Switching in Soft Cellular Structures and Hydrogel-Elastomer Composite Materials under Compression
by Jianying Hu, Yu Zhou, Zishun Liu and Teng Yong Ng
Polymers 2017, 9(6), 229; https://doi.org/10.3390/polym9060229 - 16 Jun 2017
Cited by 14 | Viewed by 7826
Abstract
It is well known that elastic instabilities induce pattern transformations when a soft cellular structure is compressed beyond critical limits. The nonlinear phenomena of pattern transformations make them a prime candidate for controlling macroscopic or microscopic deformation and auxetic properties of the material. [...] Read more.
It is well known that elastic instabilities induce pattern transformations when a soft cellular structure is compressed beyond critical limits. The nonlinear phenomena of pattern transformations make them a prime candidate for controlling macroscopic or microscopic deformation and auxetic properties of the material. In this present work, the novel mechanical properties of soft cellular structures and related hydrogel–elastomer composites are examined through experimental investigation and numerical simulations. We provide two reliable approaches for fabricating hydrogel–elastomer composites with rationally designed properties and transformed patterns, and demonstrate that different geometries of the repeat unit voids of the periodic pattern can be used to influence the global characteristics of the soft composite material. The experimental and numerical results indicate that the transformation event is dependent on the boundary conditions and material properties of matrix material for soft cellular structures; meanwhile, the deformation-triggered pattern of matrix material affects the pattern switching and mechanical properties of the hydrogel–elastomer material, thus providing future perspectives for optimal design, or serving as a fabrication suggestion of the new hydrogel–elastomer composite material. Full article
(This article belongs to the Special Issue Functionally Responsive Polymeric Materials)
Show Figures

Graphical abstract

8188 KiB  
Article
A Novel Heterogalactan from Antrodia camphorata and Anti-Angiogenic Activity of Its Sulfated Derivative
by Yanqiu Liu, Yaqi Ding, Min Ye, Tao Zhu, Danbi Tian and Kan Ding
Polymers 2017, 9(6), 228; https://doi.org/10.3390/polym9060228 - 16 Jun 2017
Cited by 9 | Viewed by 4489
Abstract
A heterogalactan, named ACW0, was extracted from Antrodia camphorata and purified by anion exchange and gel permeation chromatography. It was composed of galactose (94.98%), traces of mannose (2.41%), and fucose (2.61%), with its molecular weight estimated to be 13.5 k Da. The polysaccharide [...] Read more.
A heterogalactan, named ACW0, was extracted from Antrodia camphorata and purified by anion exchange and gel permeation chromatography. It was composed of galactose (94.98%), traces of mannose (2.41%), and fucose (2.61%), with its molecular weight estimated to be 13.5 k Da. The polysaccharide ACW0 was shown to be a mannofucogalactan with a backbone chain of α-d-1,6-linked Gal, attached by a non-reducing terminal α-d-Man and α-l-Fuc on C-2 of nearly every six α-d-1,6-linked Gal residues. A sulfated polysaccharide, ACW0-Sul was achieved by the chlorosulfonic acid-pyridine method. Compared with the native polysaccharide, ACW0-Sul could disrupt tube formation and migration as well as cell growth of human microvascular endothelial cells (HMEC-1) dose-dependently. Further studies revealed that phosphorylation of Extracellular Regulated Protein Kinases (Erk) and Focal Adhesion Kinase (FAK) were significantly inhibited by ACW0-Sul. These results suggested that ACW0-Sul could be a potent candidate for anti-angiogenic agent development. Full article
Show Figures

Figure 1

3119 KiB  
Article
A Conjugated Polyelectrolyte with Pendant High Dense Short-Alkyl-Chain-Bridged Cationic Ions: Analyte-Induced Light-Up and Label-Free Fluorescent Sensing of Tumor Markers
by Nina Fu, Yijiao Wang, Dan Liu, Caixia Zhang, Shao Su, Biqing Bao, Baomin Zhao and Lianhui Wang
Polymers 2017, 9(6), 227; https://doi.org/10.3390/polym9060227 - 15 Jun 2017
Cited by 5 | Viewed by 5504
Abstract
A novel cationic water-soluble conjugated polyelectrolyte (CPE) of polyfluorene that contains 15% fraction of 2,1,3-benzothiadiazole (BT) units (PFC3NBT) has been obtained. PFC3NBT demonstrates intramolecular energy transfer from the fluorene segments to BT sites when negatively charged species (SDS or DNAs) are added, following [...] Read more.
A novel cationic water-soluble conjugated polyelectrolyte (CPE) of polyfluorene that contains 15% fraction of 2,1,3-benzothiadiazole (BT) units (PFC3NBT) has been obtained. PFC3NBT demonstrates intramolecular energy transfer from the fluorene segments to BT sites when negatively charged species (SDS or DNAs) are added, following by a shift in emission color from blue to green, has been developed. The high density of positive charges and pendent short alkyl chains of N-propyltrimethylammoniums endow PFC3NBT with high solubility and high fluorescence quantum efficiency of 33.6% in water. The fluorescence emission properties were investigated in the presence of adverse buffer solutions, different surfactants and DNA strands. Interesting fluorescence emission quenching at short wavelength and fluorescence resonance energy transfer (FRET) induced light-on at BT sites were observed and discussed in detail. Very different from previous reports, the fluorescence emission spectra transition happens with an enhancement of integrated fluorescent intensity. The analytes induced a light-up sensing system was studied with a PFC3NBT/SDS complex mode and confirmed with DNA/DNA-FAM sensing systems. More exciting preliminary results on label-free sensing of tumor markers were also reported by investigating the unique fluorescence response to 11 kinds of proteins. These results provide a new insight view for designing CPEs with light-up and label-free features for biomolecular sensing. Full article
(This article belongs to the Special Issue Polymers for Chemosensing)
Show Figures

Figure 1

4378 KiB  
Article
Electrochemical Polymerization of Hydroquinone on Graphite Felt as a Pseudocapacitive Material for Application in a Microbial Fuel Cell
by Guanwen Wang and Chunhua Feng
Polymers 2017, 9(6), 220; https://doi.org/10.3390/polym9060220 - 15 Jun 2017
Cited by 33 | Viewed by 9306
Abstract
Here we reported the use of electropolymerization to achieve the transformation of aqueous hydroquinone to solid-phase polyhydroquinone (PHQ) with pseudocapacitive characteristics, and the application of this redox-active product to shuttle electron transfer in the anode system of a microbial fuel cell (MFC). The [...] Read more.
Here we reported the use of electropolymerization to achieve the transformation of aqueous hydroquinone to solid-phase polyhydroquinone (PHQ) with pseudocapacitive characteristics, and the application of this redox-active product to shuttle electron transfer in the anode system of a microbial fuel cell (MFC). The microscopic and spectroscopic results showed that the treatment of the graphite felt (GF) substrate with acids was effective in improving the amounts of surface-bound oxygen-containing groups, enabling better adhesion of PHQ onto the GF surfaces. The electrochemical measurements indicated that the resulting PHQ–AGF (acid treated GF) possessed high pseudocapacitance due to the fast and reversible redox cycling between hydroquinone and benzoquinone. The MFC equipped with the PHQ–AGF anode achieved a maximum power density of 633.6 mW m−2, which was much higher than 368.2, 228.8, and 119.7 mW m−2 corresponding to the MFC with the reference PHQ–GF, AGF, and GF anodes, respectively. The increase in the power performance was attributed to the incorporation of the redox-active PHQ abundant in C–OH and C=O groups that were beneficial to the increased extracellular electron transfer and enhanced bacterial adhesion on the anode. Full article
(This article belongs to the Special Issue Conductive Polymers 2017)
Show Figures

Graphical abstract

2548 KiB  
Article
Thiol-Ene Photo-Click Collagen-PEG Hydrogels: Impact of Water-Soluble Photoinitiators on Cell Viability, Gelation Kinetics and Rheological Properties
by Róisín Holmes, Xue-Bin Yang, Aishling Dunne, Larisa Florea, David Wood and Giuseppe Tronci
Polymers 2017, 9(6), 226; https://doi.org/10.3390/polym9060226 - 14 Jun 2017
Cited by 64 | Viewed by 11674
Abstract
Thiol-ene photo-click hydrogels were prepared via step-growth polymerisation using thiol-functionalised type-I collagen and 8-arm poly(ethylene glycol) norbornene-terminated (PEG-NB), as a potential injectable regenerative device. Type-I collagen was thiol-functionalised by a ring opening reaction with 2-iminothiolane (2IT), whereby up to 80 Abs.% functionalisation and [...] Read more.
Thiol-ene photo-click hydrogels were prepared via step-growth polymerisation using thiol-functionalised type-I collagen and 8-arm poly(ethylene glycol) norbornene-terminated (PEG-NB), as a potential injectable regenerative device. Type-I collagen was thiol-functionalised by a ring opening reaction with 2-iminothiolane (2IT), whereby up to 80 Abs.% functionalisation and 90 RPN% triple helical preservation were recorded via 2,4,6-Trinitrobenzenesulfonic acid (TNBS) colorimetric assay and circular dichroism (CD). Type, i.e., either 2-Hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (I2959) or lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), and concentration of photoinitiator were varied to ensure minimal photoinitiator-induced cytotoxicity and to enable thiol-ene network formation of collagen-PEG mixtures. The viability of G292 cells following 24 h culture in photoinitiator-supplemented media was largely affected by the photoinitiator concentration, with I2959-supplemented media observed to induce higher toxic response (0.1 → 0.5% (w/v) I2959, cell survival: 62 → 2 Abs.%) compared to LAP-supplemented media (cell survival: 86 → 8 Abs.%). In line with the in vitro study, selected photoinitiator concentrations were used to prepare thiol-ene photo-click hydrogels. Gelation kinetics proved to be largely affected by the specific photoinitiator, with LAP-containing thiol-ene mixtures leading to significantly reduced complete gelation time (τ: 187 s) with respect to I2959-containing mixtures (τ: 1683 s). Other than the specific photoinitiator, the photoinitiator concentration was key to adjusting the hydrogel storage modulus (G’), whereby 15-fold G’ increase (232 → 3360 Pa) was observed in samples prepared with 0.5% (w/v) compared to 0.1% (w/v) LAP. Further thiol-ene formulations with 0.5% (w/v) LAP and varied content of PEG-NB were tested to prepare photo-click hydrogels with porous architecture, as well as tunable storage modulus (G’: 540–4810 Pa), gelation time (τ: 73–300 s) and swelling ratio (SR: 1530–2840 wt %). The photoinitiator-gelation-cytotoxicity relationships established in this study will be instrumental to the design of orthogonal collagen-based niches for regenerative medicine. Full article
(This article belongs to the Special Issue Hydrogels in Tissue Engineering and Regenerative Medicine)
Show Figures

Figure 1

663 KiB  
Erratum
Erratum: pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137
by Muhammad Rizwan, Rosiyah Yahya, Aziz Hassan, Muhammad Yar, Ahmad Danial Azzahari, Vidhya Selvanathan, Faridah Sonsudin and Cheyma Naceur Abouloula
Polymers 2017, 9(6), 225; https://doi.org/10.3390/polym9060225 - 14 Jun 2017
Cited by 14 | Viewed by 4215
Abstract
The authors wish to make a change to their published paper [1]. [...]
Full article
Show Figures

Figure 6

4002 KiB  
Article
Polyamidoamine (PAMAM) Dendrimers Modified with Cathepsin-B Cleavable Oligopeptides for Enhanced Gene Delivery
by Seulgi Lee, Sang Jae Son, Su Jeong Song, Tai Hwan Ha and Joon Sig Choi
Polymers 2017, 9(6), 224; https://doi.org/10.3390/polym9060224 - 14 Jun 2017
Cited by 26 | Viewed by 9776
Abstract
Because of the complex mechanisms mediating cancer onset, prognosis, and metastatic behavior, different therapeutic approaches targeting these mechanisms have been investigated. Recent advancements in nanocarrier-based drug and gene delivery methods have encouraged scientific groups to investigate various novel therapeutic techniques. In this study, [...] Read more.
Because of the complex mechanisms mediating cancer onset, prognosis, and metastatic behavior, different therapeutic approaches targeting these mechanisms have been investigated. Recent advancements in nanocarrier-based drug and gene delivery methods have encouraged scientific groups to investigate various novel therapeutic techniques. In this study, a poly(amidoamine) (PAMAM) polymer-based gene carrier containing the cathepsin B-enzyme sensitive sequence (glycine-phenylalanine-leucine-glycine, GFLG) was evaluated to determine transfection efficiency. Following the GFLG sequence, the surface of PAMAM generation 4 (G4) was conjugated with histidine (H) and arginine (R) for improved endosomal escape and cellular uptake, respectively. The successful synthesis of G4-GLFG-H-R was confirmed by 1H-nuclear magnetic resonance spectroscopy. The polyplex composed of G4-GLFG-H-R and pDNA was simulated by the enzyme cathepsin B and induced endosomal escape of pDNA, which was confirmed by gel electrophoresis. Compared with the G4 control, enzyme-sensitive G4-GLFG-H-R showed higher transfection efficiency and lower cytotoxicity in HeLa cells. These results demonstrated that G4-GLFG-H-R may be a highly potent and efficient carrier for gene therapy applications. Full article
(This article belongs to the Special Issue Polymers and Nanogels for Gene Therapy)
Show Figures

Graphical abstract

5055 KiB  
Article
Tannin-Based Copolymer Resins: Synthesis and Characterization by Solid State 13C NMR and FT-IR Spectroscopy
by Gianluca Tondi
Polymers 2017, 9(6), 223; https://doi.org/10.3390/polym9060223 - 13 Jun 2017
Cited by 61 | Viewed by 11221
Abstract
In recent years, the interest for bio-sources is rising exponentially and tannins extracts are one of the most interesting, easily-available, phenolic building blocks. The condensed tannins or proanthocyanidins are already known for their polymerization chemistry, which is the basis for several natural-based materials [...] Read more.
In recent years, the interest for bio-sources is rising exponentially and tannins extracts are one of the most interesting, easily-available, phenolic building blocks. The condensed tannins or proanthocyanidins are already known for their polymerization chemistry, which is the basis for several natural-based materials (e.g., adhesives, foams). In the present work we aim to observe the behavior of the extract of Acacia Mimosa (Acacia mearnsii) when reacted with several possible co-monomers at different relative amount, pH and temperature conditions. The more insoluble copolymers obtained with formaldehyde, hexamine, glyoxal, maleic anhydride, furfural and furfuryl alcohol were analyzed through solid state 13C NMR (Nuclear magnetic resonance) and FT-IR (Fourier Transform-Infrared) spectroscopy. The 13C NMR afforded the opportunity to detect: (i) aromatic substitutions and consequent poly-condensations for the majority of the hardeners studied; (ii) acylation for the maleic anhydride and also some; (iii) Diels–Alder arrangements for the furanic co-monomers; the FT-IR spectroscopy suggested that the formaldehyde and hexamine copolymers present a higher cross-linking degree. Full article
(This article belongs to the Special Issue Bio-inspired and Bio-based Polymers)
Show Figures

Graphical abstract

1751 KiB  
Article
Reinforcement of Gelatin-Based Nanofilled Polymer Biocomposite by Crystalline Cellulose from Cotton for Advanced Wound Dressing Applications
by Shukanta Bhowmik, Jahid M. M. Islam, Tonmoy Debnath, Muhammed Yusuf Miah, Shovon Bhattacharjee and Mubarak A. Khan
Polymers 2017, 9(6), 222; https://doi.org/10.3390/polym9060222 - 13 Jun 2017
Cited by 42 | Viewed by 11111
Abstract
This study is designed to extract crystalline cellulose from cotton and reinforcing gelatin film for biomedical applications, especially as a wound dressing material for its exceptional biocompatibility and bio-activity. Moreover, gelatin helps in wound healing and crystalline cellulose as additive can improve its [...] Read more.
This study is designed to extract crystalline cellulose from cotton and reinforcing gelatin film for biomedical applications, especially as a wound dressing material for its exceptional biocompatibility and bio-activity. Moreover, gelatin helps in wound healing and crystalline cellulose as additive can improve its properties. Crystalline cellulose was prepared through hydrolysis and the effects of crystalline cellulose loading on the morphology, mechanical properties, and water sensitivity of the nanocomposite were investigated by means of scanning electron microscopy, tensile strength testing, and water absorption testing. Developed biocomposite film showed homogeneous dispersion of crystalline cellulose within the gelatin matrix and strong interfacial adherence between the matrix and reinforcement. Samples were tested for biocompatibility and in vitro cytotoxicity and found to have excellent biocompatibility without having any cytotoxicity. In vivo wound healing study in an animal model showed 40% increased healing than the model dressed by conventional dressing. Full article
(This article belongs to the Collection Polysaccharides)
Show Figures

Graphical abstract

5198 KiB  
Article
Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics
by Anna Katharina Sambale, Marc Schöneich and Markus Stommel
Polymers 2017, 9(6), 221; https://doi.org/10.3390/polym9060221 - 13 Jun 2017
Cited by 12 | Viewed by 7335
Abstract
The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and [...] Read more.
The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite. Full article
Show Figures

Figure 1

4449 KiB  
Article
Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods
by Kaili Wang, Youming Dong, Wei Zhang, Shifeng Zhang and Jianzhang Li
Polymers 2017, 9(6), 218; https://doi.org/10.3390/polym9060218 - 12 Jun 2017
Cited by 48 | Viewed by 7702
Abstract
Mussel-inspired polydopamine (PDA) chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a [...] Read more.
Mussel-inspired polydopamine (PDA) chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic wood surfaces were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The PDA and octadecylamine (OA) modified surface showed excellent superhydrophobicity with a water contact angle (CA) of about 153° and a rolling angle (RA) of about 9°. The CA further increased to about 157° and RA reduced to about 5° with the Cu metallization. The superhydrophobic material exhibited outstanding stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and organic solvent immersion, and high-temperature water boiling. The results suggested that the PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless deposition technique may allow for a wide range of potential applications in biomimetic materials. Full article
Show Figures

Graphical abstract

2385 KiB  
Article
Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion
by Jiaxin Hou, Wenwen Ding, Yancong Feng, Lingling Shui, Yao Wang, Hao Li, Nan Li and Guofu Zhou
Polymers 2017, 9(6), 217; https://doi.org/10.3390/polym9060217 - 11 Jun 2017
Cited by 3 | Viewed by 6066
Abstract
In electrowetting devices, hydrophobic insulating layer, namely dielectric layer, is capable of reversibly switching surface wettability through applied electric field. It is critically important but limited by material defects in dielectricity, reversibility, film forming, adhesiveness, price and so on. To solve this key [...] Read more.
In electrowetting devices, hydrophobic insulating layer, namely dielectric layer, is capable of reversibly switching surface wettability through applied electric field. It is critically important but limited by material defects in dielectricity, reversibility, film forming, adhesiveness, price and so on. To solve this key problem, we introduced a novel fluorinated polyacrylate—poly(1H,1H,2H,2H-perfluoroctylmethacrylate (PFMA) to construct micron/submicron-scale dielectric layer via facile spray coating of nanoemulsion for replacing the most common Teflon AF series. All the results illustrated that, continuous and dense PFMA film with surface relief less than 20 nm was one-step fabricated at 110 °C, and exhibited much higher static water contact angle of 124°, contact angle variation of 42°, dielectric constant of about 2.6, and breakdown voltage of 210 V than Teflon AF 1600. Particularly, soft and highly compatible polyacrylate mainchain assigned five times much better adhesiveness than common adhesive tape, to PFMA layer. As a promising option, PFMA dielectric layer may further facilitate tremendous development of electrowetting performances and applications. Full article
(This article belongs to the Special Issue Polymers and Block Copolymers at Interfaces and Surfaces)
Show Figures

Figure 1

5867 KiB  
Article
Block Copolymer Membranes from Polystyrene-b-poly(solketal methacrylate) (PS-b-PSMA) and Amphiphilic Polystyrene-b-poly(glyceryl methacrylate) (PS-b-PGMA)
by Sarah Saleem, Sofia Rangou, Clarissa Abetz, Brigitte Lademann, Volkan Filiz and Volker Abetz
Polymers 2017, 9(6), 216; https://doi.org/10.3390/polym9060216 - 10 Jun 2017
Cited by 23 | Viewed by 10175
Abstract
In this paper; we compare double hydrophobic polystyrene-b-poly(solketal methacrylate) (PS-b-PSMA) and amphiphilic polystyrene-b-poly(glyceryl methacrylate) (PS-b-PGMA) diblock copolymer membranes which are prepared by combining the block copolymer self-assembly in solution with a non-solvent induced phase separation [...] Read more.
In this paper; we compare double hydrophobic polystyrene-b-poly(solketal methacrylate) (PS-b-PSMA) and amphiphilic polystyrene-b-poly(glyceryl methacrylate) (PS-b-PGMA) diblock copolymer membranes which are prepared by combining the block copolymer self-assembly in solution with a non-solvent induced phase separation (SNIPS). Diblock copolymers (i.e., PS-b-PSMA) were synthesized by sequential living anionic polymerization, whereas polystyrene-b-poly(glyceryl methacrylate) (PS-b-PGMA) were obtained by acid hydrolysis of the acetonide groups of the polysolketal methacrylate (PSMA) blocks into dihydroxyl groups (PGMA). Membrane structures and bulk morphologies were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); respectively. The resulting PS-b-PGMA diblock copolymers produce an ordered hexagonal cylindrical pore structure during the SNIPS process, while membranes fabricated from the double hydrophobic (PS-b-PSMA) do not under similar experimental conditions. Membrane performance was evaluated by water flux and contact angle measurements. Full article
(This article belongs to the Special Issue Polymers and Block Copolymers at Interfaces and Surfaces)
Show Figures

Graphical abstract

3030 KiB  
Article
Primary Hepatocytes Cultured on a Fiber-Embedded PDMS Chip to Study Drug Metabolism
by Yaowen Liu, Ke Hu and Yihao Wang
Polymers 2017, 9(6), 215; https://doi.org/10.3390/polym9060215 - 10 Jun 2017
Cited by 9 | Viewed by 5380
Abstract
In vitro drug screening using reliable and predictable liver models remains a challenge. The identification of an ideal biological substrate is essential to maintain hepatocyte functions during in vitro culture. Here, we developed a fiber-embedded polydimethylsiloxane (PDMS) chip to culture hepatocytes. Hepatocyte spheroids [...] Read more.
In vitro drug screening using reliable and predictable liver models remains a challenge. The identification of an ideal biological substrate is essential to maintain hepatocyte functions during in vitro culture. Here, we developed a fiber-embedded polydimethylsiloxane (PDMS) chip to culture hepatocytes. Hepatocyte spheroids formed in this device were subjected to different flow rates, of which a flow rate of 50 μL/min provided the optimal microenvironment for spheroid formation, maintained significantly higher rates of albumin and urea synthesis, yielded higher CYP3A1 (cytochrome P450 3A1) and CYP2C11 (cytochrome P450 2C11) enzyme activities for metabolism, and demonstrated higher expression levels of liver-specific genes. In vitro metabolism tests on tolbutamide and testosterone by hepatocytes indicated predicted clearance rates of 1.98 ± 0.43 and 40.80 ± 10.13 mL/min/kg, respectively, which showed a good in vitro–in vivo correspondence. These results indicate that this system provides a strategy for the construction of functional engineered liver tissue that can be used to study drug metabolism. Full article
Show Figures

Figure 1

5313 KiB  
Article
Preparation and Chromatographic Application of β-Cyclodextrin Molecularly Imprinted Microspheres for Paeoniflorin
by Wei Zhang, Bofeng Wei, Shoujiang Li, Yueming Wang and Shaoyan Wang
Polymers 2017, 9(6), 214; https://doi.org/10.3390/polym9060214 - 9 Jun 2017
Cited by 15 | Viewed by 5721
Abstract
The application of molecular imprinting technology in the separation and purification of active ingredients in natural products was widely reported, but remains a challenge. Enrichment and separation are especially limited. A surface imprinting technique was reported to synthesize molecularly imprinted microspheres (MIMs) in [...] Read more.
The application of molecular imprinting technology in the separation and purification of active ingredients in natural products was widely reported, but remains a challenge. Enrichment and separation are especially limited. A surface imprinting technique was reported to synthesize molecularly imprinted microspheres (MIMs) in this article. With paeoniflorin (PF) as the template molecule, β-cyclodextrin (β-CD) and acrylamide (AA) as the functional monomers, and poly(glycidyl methacrylate, GMA) microspheres (PGMA) as the backing material. MIMs have been characterized by FTIR and FESEM. Adsorption experiments indicated the adsorption capacity of MIMs was superior to those comparative non-imprinted microspheres (NIMs) and the binding isotherm of MIMs was in good agreement with the two-site binding model. The baseline separation of PF and its structural analogue albiflorin (AF) were achieved on the new MIMs packed column. MIMs showed good affinity and efficiency for separation of PF and AF compared with those comparative NIMs. The approach of fabricating MIMs is simple, rapid, and inexpensive, and may shed new light on the application of MIMs as a liquid chromatography stationary phase to separate and analyze PF and AF from the Red peony root extracts. Full article
Show Figures

Graphical abstract

2609 KiB  
Article
Multifunctional Polymer Nanoparticles for Dual Drug Release and Cancer Cell Targeting
by Yu-Han Wen, Tsung-Ying Lee, Ping-Chuan Fu, Chun-Liang Lo and Yi-Ting Chiang
Polymers 2017, 9(6), 213; https://doi.org/10.3390/polym9060213 - 9 Jun 2017
Cited by 11 | Viewed by 7451
Abstract
Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin) (HBD) in which [...] Read more.
Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin) (HBD) in which doxorubicin (DOX) was conjugated by a hydrazone bond to encapsulate an immunotherapy drug, imiquimod (IMQ), to form dual cancer-targeting and dual drug-loaded nanoparticles. At low pH, polymeric nanoparticles could disrupt and simultaneously release DOX and IMQ. Our experimental results show that the nanoparticles exhibited pH-dependent drug release behavior and had an ability to target cancer cells via biotin and protonated histidine. Full article
(This article belongs to the Special Issue Functionally Responsive Polymeric Materials)
Show Figures

Graphical abstract

8578 KiB  
Review
Control of Molecular Ordering, Alignment, and Charge Transport in Solution-Processed Conjugated Polymer Thin Films
by Mincheol Chang, Gyun Taek Lim, Byoungnam Park and Elsa Reichmanis
Polymers 2017, 9(6), 212; https://doi.org/10.3390/polym9060212 - 8 Jun 2017
Cited by 72 | Viewed by 13128
Abstract
Morphology of conjugated polymers is a critical factor that significantly affects intrinsic charge transport characteristics and in turn performance of polymer-based devices. Morphological defects including misaligned crystalline grains and grain boundaries significantly impede efficient charge hopping between transport sites, resulting in degradation of [...] Read more.
Morphology of conjugated polymers is a critical factor that significantly affects intrinsic charge transport characteristics and in turn performance of polymer-based devices. Morphological defects including misaligned crystalline grains and grain boundaries significantly impede efficient charge hopping between transport sites, resulting in degradation of device performance. Therefore, one important challenge is to control morphology of active polymer thin-films for achieving high performance flexible electronic devices. In the past decade, significant progress has been achieved in morphology control of conjugated polymer thin-films using solution-based processing techniques. This review focuses on recent advances in processing strategies that can tune the morphologies and thus impact charge transport properties of conjugated polymer thin films. Of the available processing strategies, polymer solution treatments and film deposition techniques will be mainly highlighted. The correlation between processing conditions, active layer morphologies, and device performance will be also be discussed. Full article
(This article belongs to the Special Issue Conductive Polymers 2017)
Show Figures

Figure 1

4210 KiB  
Article
DNA Binding with Acetate Bis(1,10-phenanthroline)silver(I) Monohydrate in a Solution and Metallization of Formed Structures
by Nina Kasyanenko, Zhang Qiushi, Vladimir Bakulev, Mikhail Osolodkov, Petr Sokolov and Viktor Demidov
Polymers 2017, 9(6), 211; https://doi.org/10.3390/polym9060211 - 8 Jun 2017
Cited by 18 | Viewed by 7213
Abstract
The study of DNA interaction with the acetate bis(1,10-phenanthroline)silver(I) monohydrate in a solution is of interest both for understanding the mechanism of biological activity of silver compound and for forming ordered structures (DNA fibrils) that can be used to solve various problems in [...] Read more.
The study of DNA interaction with the acetate bis(1,10-phenanthroline)silver(I) monohydrate in a solution is of interest both for understanding the mechanism of biological activity of silver compound and for forming ordered structures (DNA fibrils) that can be used to solve various problems in the field of nanotechnology. The analysis of changing the DNA conformation (secondary structure, persistent length and volume effects) during the interaction by the methods of UV spectroscopy with the analysis of DNA melting, circular dichroism, viscosity, flow birefringence, AFM (atomic force microscopy) and SEM (scanning electron microscopy) was performed. The formation of two types of complexes was observed. At lower concentration of compound in DNA solution, silver atoms form the coordination bonds with a macromolecule, while the released phenanthroline ligands intercalate between DNA bases. When the concentration of the compound increases, the phenanthroline ligands form an ordered “layer” around the helix. The excess of silver compounds in the DNA solution (with more than five silver atoms per base pair), DNA precipitation is observed with the formation of long fibrils. It was shown that the binding of silver to DNA during the formation of complexes provides further metallization of the resulting structures with the aid of reducing agents; phenanthroline ligands influence the result of such metallization. Full article
(This article belongs to the Special Issue Bio-inspired and Bio-based Polymers)
Show Figures

Graphical abstract

1813 KiB  
Article
Preparation and Characterization of Quaternized Chitosan Coated Alginate Microspheres for Blue Dextran Delivery
by Kuo-Yu Chen and Si-Ying Zeng
Polymers 2017, 9(6), 210; https://doi.org/10.3390/polym9060210 - 7 Jun 2017
Cited by 18 | Viewed by 5930
Abstract
In this study, 2-[(Acryloyloxy)ethyl]trimethylammonium chloride was graft polymerized onto chitosan (CS) to form quaternary ammonium CS (QAC) by using ammonium persulfate as a redox initiator. Alginate (ALG) microspheres loaded with a water-soluble macromolecular model drug, blue dextran (BD), were obtained by corporation of [...] Read more.
In this study, 2-[(Acryloyloxy)ethyl]trimethylammonium chloride was graft polymerized onto chitosan (CS) to form quaternary ammonium CS (QAC) by using ammonium persulfate as a redox initiator. Alginate (ALG) microspheres loaded with a water-soluble macromolecular model drug, blue dextran (BD), were obtained by corporation of coaxial gas-flow method and ionic gelation process. CS and QAC were then coated on the surfaces of ALG microspheres to generate core/shell structured CS/ALG and QAC/ALG microspheres, respectively. The experiment result showed that QAC/ALG microspheres had a smaller particle size due to the stronger electrostatic interactions between QAC and ALG molecules. In vitro drug release studies at pH 7.4 and pH 9.0 exhibited that the release rate of BD was significantly decreased after ALG microspheres coating with CS and QAC. Moreover, ALG microspheres coated with QAC showed a prolonged release profile for BD at pH 9.0. Therefore, QAC/ALG microspheres may be a promising hydrophilic macromolecular drug carrier for a prolonged and sustained delivery. Full article
(This article belongs to the Collection Polysaccharides)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop