Fungi and Fungal Metabolites for the Improvement of Human and Animal Life, Nutrition and Health 2.0

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Cell Biology, Metabolism and Physiology".

Deadline for manuscript submissions: closed (31 August 2022) | Viewed by 74534

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, ESIROI Département Agroalimentaire, Université de La Réunion, 2 rue Joseph Wetzell, F‐97490 Sainte‐Clotilde, La Réunion, France
Interests: sustainable textile; microbial biotechnology; microbial production of pigments and colorants; fermentation; bioprocess engineering and fermentation technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fungi comprise 1, 2, 3, ..., or maybe around 5.1 million species. Even scientists do not currently agree on how many fungi species may be found on planet Earth, with only around 120,000 of these having been described so far. Fungi have been classified as a separate kingdom of organisms as complex and diverse as plants and animals, of which only a few percent have been named and described. Fungal biomasses and fungal metabolites share a long common history with human and animal nutrition and health. Macrofungi and filamentous fungi constitute a large portfolio of proteins, lipids, vitamins, minerals, oligo elements, pigments, colorants, bioactive compounds, antibiotics, pharmaceuticals, etc. For example, industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. Some start-ups convert byproducts and side streams rich in carbohydrates into a protein-rich fungal biomass. This biomass can then be processed into a vegan meat substitute for food applications. In recent years, there has also been a significant increase (in fact, a significant revival) in the number of publications in the international literature dealing with the production of lipids by microbial sources (the single-cell oils (SCOs) that are produced by the so-called “oleaginous” microorganisms, including “oleaginous” fungi (e.g., zygomycete species, Cunninghamella echinulate, and Mortierella isabellina). Fungi are potential sources of polyunsaturated fatty acids (PUFAs) as these microorganisms can accumulate large amounts of high-valued PUFAs, such as gamma-linolenic acid (GLA) and arachidonic acid (ARA).

The purpose of this Special Issue of Journal of Fungi (MDPI) is not to provide a comprehensive overview of the vast arena of how fungi and fungal metabolites are able to improve human and animal life, nutrition and health, but to encourage authors working in this field to publish their most recent work in this rapidly growing journal in order for the large readership to appreciate the full potential of wonderful and beneficial fungi. Thus, this Special Issue welcomes scientific contributions on applications of fungi and fungal metabolites, such as bioactive fatty acids, pigments, polysaccharides, alkaloids, terpenoids, etc., with great potential in human and animal life, nutrition, and health.

A first special issue on this subject (2020) involved 24 papers
https://www.mdpi.com/journal/jof/special_issues/fungal_metabolites_health

and a book was edited
https://www.mdpi.com/books/pdfview/book/3967

Prof. Dr. Laurent Dufossé
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2983 KiB  
Article
Nephroprotective Effects of Two Ganoderma Species Methanolic Extracts in an In Vitro Model of Cisplatin Induced Tubulotoxicity
by Sébastien Sinaeve, Cécile Husson, Marie-Hélène Antoine, Stéphane Welti, Caroline Stévigny and Joëlle Nortier
J. Fungi 2022, 8(10), 1002; https://doi.org/10.3390/jof8101002 - 24 Sep 2022
Cited by 4 | Viewed by 2033
Abstract
Although cisplatin is used as a first-line therapy in many cancers, its nephrotoxicity remains a real problem. Acute kidney injuries induced by cisplatin can cause proximal tubular necrosis, possibly leading to interstitial fibrosis, chronic dysfunction, and finally to a cessation of chemotherapy. There [...] Read more.
Although cisplatin is used as a first-line therapy in many cancers, its nephrotoxicity remains a real problem. Acute kidney injuries induced by cisplatin can cause proximal tubular necrosis, possibly leading to interstitial fibrosis, chronic dysfunction, and finally to a cessation of chemotherapy. There are only a few nephroprotective actions that can help reduce cisplatin nephrotoxicity. This study aims to identify new prophylactic properties with respect to medicinal mushrooms. Among five Ganoderma species, the methanolic extracts of Ganoderma tuberculosum Murill., Ganoderma parvigibbosum Welti & Courtec. (10 µg/mL), and their association (5 + 5 µg/mL) were selected to study respective in vitro effects on human proximal tubular cells (HK-2) intoxicated by cisplatin. Measurements were performed after a pretreatment of 1 h with the extracts before adding cisplatin (20 µM). A viability assay, antioxidant activity, intracytoplasmic β-catenin, calcium, caspase-3, p53, cytochrome C, IL-6, NFκB, membranous KIM-1, and ROS overproduction were studied. Tests showed that both methanolic extracts and their association prevented a loss of viability, apoptosis, and its signaling pathway. G. parvigibbosum and the association prevented an increase in intracytoplasmic β-catenin. G. parvigibbosum prevented ROS overproduction and exhibited scavenger activity. None of the extracts could interfere with pro-inflammatory markers or calcium homeostasis. Our in vitro data demonstrate that these mushroom extracts have interesting nephroprotective properties. Finally, the chemical content was investigated through a phytochemical screening, and the determination of the total phenolic and triterpenoid content. Further studies about the chemical composition need to be conducted. Full article
Show Figures

Figure 1

30 pages, 5892 KiB  
Article
Multigene Phylogeny, Beauvericin Production and Bioactive Potential of Fusarium Strains Isolated in India
by Shiwali Rana, Sanjay Kumar Singh and Laurent Dufossé
J. Fungi 2022, 8(7), 662; https://doi.org/10.3390/jof8070662 - 24 Jun 2022
Cited by 3 | Viewed by 3711
Abstract
The taxonomy of the genus Fusarium has been in a flux because of ambiguous circumscription of species-level identification based on morphotaxonomic criteria. In this study, multigene phylogeny was conducted to resolve the evolutionary relationships of 88 Indian Fusarium isolates based on the internal [...] Read more.
The taxonomy of the genus Fusarium has been in a flux because of ambiguous circumscription of species-level identification based on morphotaxonomic criteria. In this study, multigene phylogeny was conducted to resolve the evolutionary relationships of 88 Indian Fusarium isolates based on the internal transcribed spacer region, 28S large subunit, translation elongation factor 1-alpha, RNA polymerase second largest subunit, beta-tubulin and calmodulin gene regions. Fusarium species are well known to produce metabolites such as beauvericin (BEA) and enniatins. These identified isolates were subjected to fermentation in Fusarium-defined media for BEA production and tested using TLC, HPLC and HRMS. Among 88 isolates studied, 50 were capable of producing BEA, which varied from 0.01 to 15.82 mg/g of biomass. Fusarium tardicrescens NFCCI 5201 showed maximum BEA production (15.82 mg/g of biomass). The extract of F. tardicrescens NFCCI 5201 showed promising antibacterial activity against Staphylococcus aureus MLS16 MTCC 2940 and Micrococcus luteus MTCC 2470 with MIC of 62.5 and 15.63 µg/mL, respectively. Similarly, the F. tardicrescens NFCCI 5201 extract in potato dextrose agar (40 µg/mL) exhibited antifungal activity in the food poison technique against plant pathogenic and other fungi, Rhizoctonia solani NFCCI 4327, Sclerotium rolfsii NFCCI 4263, Geotrichum candidum NFCCI 3744 and Pythium sp. NFCCI 3482, showing % inhibition of 84.31, 49.76, 38.22 and 35.13, respectively. The antibiotic effect was found to synergize when Fusarium extract and amphotericin B (20 µg/mL each in potato dextrose agar) were used in combination against Rhizopus sp. NFCCI 2108, Sclerotium rolfsii NFCCI 4263, Bipolaris sorokiniana NFCCI 4690 and Absidia sp. NFCCI 2716, showing % inhibition of 50.35, 79.37, 48.07 and 76.72, respectively. The extract also showed satisfactory dose-dependent DPPH radical scavenging activity with an IC50 value of 0.675 mg/mL. This study reveals the correct identity of the Indian Fusarium isolates based on multigene phylogeny and also throws light on BEA production potential, suggesting their possible applicability in the medicine, agriculture and industry. Full article
Show Figures

Figure 1

21 pages, 4028 KiB  
Article
Isolation and Characterization of a Novel Hydrophobin, Sa-HFB1, with Antifungal Activity from an Alkaliphilic Fungus, Sodiomyces alkalinus
by Anastasia E. Kuvarina, Eugene A. Rogozhin, Maxim A. Sykonnikov, Alla V. Timofeeva, Marina V. Serebryakova, Natalia V. Fedorova, Lyudmila Y. Kokaeva, Tatiana A. Efimenko, Marina L. Georgieva and Vera S. Sadykova
J. Fungi 2022, 8(7), 659; https://doi.org/10.3390/jof8070659 - 23 Jun 2022
Cited by 9 | Viewed by 2410
Abstract
The adaptations that alkaliphilic microorganisms have developed due to their extreme habitats promote the production of active natural compounds with the potential to control microorganisms, causing infections associated with healthcare. The primary purpose of this study was to isolate and identify a hydrophobin, [...] Read more.
The adaptations that alkaliphilic microorganisms have developed due to their extreme habitats promote the production of active natural compounds with the potential to control microorganisms, causing infections associated with healthcare. The primary purpose of this study was to isolate and identify a hydrophobin, Sa-HFB1, from an alkaliphilic fungus, Sodiomyces alkalinus. A potential antifungal effect against pathogenic and opportunistic fungi strains was determined. The MICs of Sa-HFB1 against opportunistic and clinical fungi ranged from 1 to 8 µg/mL and confirmed its higher activity against both non- and clinical isolates. The highest level of antifungal activity (MIC 1 µg/mL) was demonstrated for the clinical isolate Cryptococcus neoformans 297 m. The hydrophobin Sa-HFB1 may be partly responsible for the reported antifungal activity of S. alkalinus, and may serve as a potential source of lead compounds, meaning that it can be developed as an antifungal drug candidate. Full article
Show Figures

Figure 1

12 pages, 5178 KiB  
Article
Insecticidal Efficacy of Metarhizium anisopliae Derived Chemical Constituents against Disease-Vector Mosquitoes
by Perumal Vivekanandhan, Kannan Swathy, Amarchand Chordia Murugan and Patcharin Krutmuang
J. Fungi 2022, 8(3), 300; https://doi.org/10.3390/jof8030300 - 15 Mar 2022
Cited by 34 | Viewed by 3793
Abstract
Insecticides can cause significant harm to both terrestrial and aquatic environments. The new insecticides derived from microbial sources are a good option with no environmental consequences. Metarhizium anisopliae (mycelia) ethyl acetate extracts were tested on larvae, pupae, and adult of Anopheles stephensi (Liston, [...] Read more.
Insecticides can cause significant harm to both terrestrial and aquatic environments. The new insecticides derived from microbial sources are a good option with no environmental consequences. Metarhizium anisopliae (mycelia) ethyl acetate extracts were tested on larvae, pupae, and adult of Anopheles stephensi (Liston, 1901), Aedes aegypti (Meigen, 1818), and Culex quinquefasciatus (Say, 1823), as well as non-target species Eudrilus eugeniae (Kinberg, 1867) and Artemia nauplii (Linnaeus, 1758) at 24 h post treatment under laboratory condition. In bioassays, Metarhizium anisopliae extracts had remarkable toxicity on all mosquito species with LC50 values, 29.631 in Ae. aegypti, 32.578 in An. stephensi and 48.003 in Cx. quinquefasciatus disease-causing mosquitoes, in A. nauplii shows (5.33–18.33 %) mortality were produced by the M. anisopliae derived crude extract. The LC50 and LC90 values were, 620.481; 6893.990 μg/mL. No behavioral changes were observed. A low lethal effect was observed in E. eugeniae treated with the fungi metabolites shows a 14.0 % mortality. The earthworm E. eugeniae mid-gut histology revealed that M. anisopliae extracts had no more harmful effects on the epidermis, circular muscle, setae, mitochondrion, and intestinal lumen tissues than chemical pesticides. By Liquid chromatography mass spectrometry (LC-MS) analysis, camphor (25.4 %), caprolactam (20.68 %), and monobutyl phthalate (19.0 %) were identified as significant components of M. anisopliae metabolites. Fourier transform infrared (FT-IR) spectral investigations revealed the presence of carboxylic acid, amides, and phenol groups, all of which could be involved in mosquito toxicity. The M. anisopliae derived chemical constituents are effective on targeted pests, pollution-free, target-specific, and are an alternative chemical insecticide. Full article
Show Figures

Graphical abstract

22 pages, 16632 KiB  
Article
Assessment of Biological Activities of Fungal Endophytes Derived Bioactive Compounds Isolated from Amoora rohituka
by Ashish Verma, Priyamvada Gupta, Nilesh Rai, Rajan Kumar Tiwari, Ajay Kumar, Prafull Salvi, Swapnil C. Kamble, Santosh Kumar Singh and Vibhav Gautam
J. Fungi 2022, 8(3), 285; https://doi.org/10.3390/jof8030285 - 10 Mar 2022
Cited by 28 | Viewed by 5572
Abstract
Fungal endophytes have remarkable potential to produce bioactive compounds with numerous pharmacological significance that are used in various disease management and human welfare. In the current study, a total of eight fungal endophytes were isolated from the leaf tissue of Amoora rohituka, [...] Read more.
Fungal endophytes have remarkable potential to produce bioactive compounds with numerous pharmacological significance that are used in various disease management and human welfare. In the current study, a total of eight fungal endophytes were isolated from the leaf tissue of Amoora rohituka, and out of which ethyl acetate (EA) extract of Penicillium oxalicum was found to exhibit potential antioxidant activity against DPPH, nitric oxide, superoxide anion and hydroxyl free radicals with EC50 values of 178.30 ± 1.446, 75.79 ± 0.692, 169.28 ± 0.402 and 126.12 ± 0.636 µg/mL, respectively. The significant antioxidant activity of EA extract of P. oxalicum is validated through highest phenolic and flavonoid content, and the presence of unique bioactive components observed through high-performance thin layer chromatography (HPTLC) fingerprinting. Moreover, EA extract of P. oxalicum also displayed substantial anti-proliferative activity with IC50 values of 56.81 ± 0.617, 37.24 ± 1.26 and 260.627 ± 5.415 µg/mL against three cancer cells HuT-78, MDA-MB-231 and MCF-7, respectively. Furthermore, comparative HPTLC fingerprint analysis and antioxidant activity of P. oxalicum revealed that fungal endophyte P. oxalicum produces bioactive compounds in a host-dependent manner. Therefore, the present study signifies that fungal endophyte P. oxalicum associated with the leaf of A. rohituka could be a potential source of bioactive compounds with antioxidant and anticancer activity. Full article
Show Figures

Graphical abstract

19 pages, 2144 KiB  
Article
Genome Sequencing and Analysis of Trichoderma (Hypocreaceae) Isolates Exhibiting Antagonistic Activity against the Papaya Dieback Pathogen, Erwinia mallotivora
by Amin-Asyraf Tamizi, Noriha Mat-Amin, Jack A. Weaver, Richard T. Olumakaiye, Muhamad Afiq Akbar, Sophie Jin, Hamidun Bunawan and Fabrizio Alberti
J. Fungi 2022, 8(3), 246; https://doi.org/10.3390/jof8030246 - 28 Feb 2022
Cited by 12 | Viewed by 4906
Abstract
Erwinia mallotivora, the causal agent of papaya dieback disease, is a devastating pathogen that has caused a tremendous decrease in Malaysian papaya export and affected papaya crops in neighbouring countries. A few studies on bacterial species capable of suppressing E. mallotivora have [...] Read more.
Erwinia mallotivora, the causal agent of papaya dieback disease, is a devastating pathogen that has caused a tremendous decrease in Malaysian papaya export and affected papaya crops in neighbouring countries. A few studies on bacterial species capable of suppressing E. mallotivora have been reported, but the availability of antagonistic fungi remains unknown. In this study, mycelial suspensions from five rhizospheric Trichoderma isolates of Malaysian origin were found to exhibit notable antagonisms against E. mallotivora during co-cultivation. We further characterised three isolates, Trichoderma koningiopsis UKM-M-UW RA5, UKM-M-UW RA6, and UKM-M-UW RA3a, that showed significant growth inhibition zones on plate-based inhibition assays. A study of the genomes of the three strains through a combination of Oxford nanopore and Illumina sequencing technologies highlighted potential secondary metabolite pathways that might underpin their antimicrobial properties. Based on these findings, the fungal isolates are proven to be useful as potential biological control agents against E. mallotivora, and the genomic data opens possibilities to further explore the underlying molecular mechanisms behind their antimicrobial activity, with potential synthetic biology applications. Full article
Show Figures

Figure 1

18 pages, 1233 KiB  
Article
Toxic Indoor Air Is a Potential Risk of Causing Immuno Suppression and Morbidity—A Pilot Study
by Kirsi Vaali, Marja Tuomela, Marika Mannerström, Tuula Heinonen and Tamara Tuuminen
J. Fungi 2022, 8(2), 104; https://doi.org/10.3390/jof8020104 - 21 Jan 2022
Cited by 13 | Viewed by 4338
Abstract
We aimed to establish an etiology-based connection between the symptoms experienced by the occupants of a workplace and the presence in the building of toxic dampness microbiota. The occupants (5/6) underwent a medical examination and urine samples (2/6) were analyzed by LC-MS/MS for [...] Read more.
We aimed to establish an etiology-based connection between the symptoms experienced by the occupants of a workplace and the presence in the building of toxic dampness microbiota. The occupants (5/6) underwent a medical examination and urine samples (2/6) were analyzed by LC-MS/MS for mycotoxins at two time-points. The magnitude of inhaled water was estimated. Building-derived bacteria and fungi were identified and assessed for toxicity. Separate cytotoxicity tests using human THP-1 macrophages were performed from the office’s indoor air water condensates. Office-derived indoor water samples (n = 4/4) were toxic to human THP-1 macrophages. Penicillium, Acremonium sensu lato, Aspergillus ochraceus group and Aspergillus section Aspergillus grew from the building material samples. These colonies were toxic in boar sperm tests (n = 11/32); four were toxic to BHK-21 cells. Mycophenolic acid, which is a potential immunosuppressant, was detected in the initial and follow-up urine samples of (2/2) office workers who did not take immunosuppressive drugs. Their urinary mycotoxin profiles differed from household and unrelated controls. Our study suggests that the presence of mycotoxins in indoor air is linked to the morbidity of the occupants. The cytotoxicity test of the indoor air condensate is a promising tool for risk assessment in moisture-damaged buildings. Full article
Show Figures

Figure 1

15 pages, 2709 KiB  
Article
Volatiles Produced by Yeasts Related to Prunus avium and P. cerasus Fruits and Their Potentials to Modulate the Behaviour of the Pest Rhagoletis cerasi Fruit Flies
by Raimondas Mozūraitis, Violeta Apšegaitė, Sandra Radžiutė, Dominykas Aleknavičius, Jurga Būdienė, Ramunė Stanevičienė, Laima Blažytė-Čereškienė, Elena Servienė and Vincas Būda
J. Fungi 2022, 8(2), 95; https://doi.org/10.3390/jof8020095 - 19 Jan 2022
Cited by 3 | Viewed by 2340
Abstract
Yeast produced semiochemicals are increasingly used in pest management programs, however, little is known on which yeasts populate cherry fruits and no information is available on the volatiles that modify the behaviour of cherry pests including Rhagoletis cerasi flies. Eighty-two compounds were extracted [...] Read more.
Yeast produced semiochemicals are increasingly used in pest management programs, however, little is known on which yeasts populate cherry fruits and no information is available on the volatiles that modify the behaviour of cherry pests including Rhagoletis cerasi flies. Eighty-two compounds were extracted from the headspaces of eleven yeast species associated with sweet and sour cherry fruits by solid phase micro extraction. Esters and alcohols were the most abundant volatiles released by yeasts. The multidimensional scaling analysis revealed that the odour blends emitted by yeasts were species-specific. Pichia kudriavzevii and Hanseniaspora uvarum yeasts released the most similar volatile blends while P. kluyveri and Cryptococcus wieringae yeasts produced the most different blends. Combined gas chromatographic and electroantennographic detection methods showed that 3-methybutyl acetate, 3-methylbutyl propionate, 2-methyl-1-butanol, and 3-methyl-1-butanol elicited antennal responses of both R. cerasi fruit fly sexes. The two-choice olfactometric tests revealed that R. cerasi flies preferred 3-methylbutyl propionate and 3-methyl-1-butanol but avoided 3-methybutyl acetate. Yeast-produced behaviourally active compounds indicated a potential for use in pest monitoring and control of R. cerasi fruit flies, an economically important pest of cherry fruits. Full article
Show Figures

Figure 1

8 pages, 1314 KiB  
Article
Absolute Configuration Determination of Two Diastereomeric Neovasifuranones A and B from Fusarium oxysporum R1 by a Combination of Mosher’s Method and Chiroptical Approach
by Zhiyang Fu, Yuanyuan Liu, Meijie Xu, Xiaojun Yao, Hong Wang and Huawei Zhang
J. Fungi 2022, 8(1), 40; https://doi.org/10.3390/jof8010040 - 31 Dec 2021
Cited by 6 | Viewed by 1998
Abstract
Endophytic fungi are one of prolific sources of bioactive natural products with potential application in biomedicine and agriculture. In our continuous search for antimicrobial secondary metabolites from Fusarium oxysporum R1 associated with traditional Chinese medicinal plant Rumex madaio Makino using one strain many [...] Read more.
Endophytic fungi are one of prolific sources of bioactive natural products with potential application in biomedicine and agriculture. In our continuous search for antimicrobial secondary metabolites from Fusarium oxysporum R1 associated with traditional Chinese medicinal plant Rumex madaio Makino using one strain many compounds (OSMAC) strategy, two diastereomeric polyketides neovasifuranones A (3) and B (4) were obtained from its solid rice medium together with N-(2-phenylethyl)acetamide (1), 1-(3-hydroxy-2-methoxyphenyl)-ethanone (2) and 1,2-seco-trypacidin (5). Their planar structures were unambiguously determined using 1D NMR and MS spectroscopy techniques as well as comparison with the literature data. By a combination of the modified Mosher’s reactions and chiroptical methods using time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) and optical rotatory dispersion (ORD), the absolute configurations of compounds 3 and 4 are firstly confirmed and, respectively, characterized as (4S,7S,8R), (4S,7S,8S). Bioassay results indicate that these metabolites 15 exhibit weak inhibitory effect on Helicobacter pylori 159 with MIC values of ≥16 μg/mL. An in-depth discussion for enhancement of fungal metabolite diversity is also proposed in this work. Full article
Show Figures

Figure 1

13 pages, 1652 KiB  
Article
Effect of Issatchenkia terricola WJL-G4 on Deacidification Characteristics and Antioxidant Activities of Red Raspberry Wine Processing
by Hongying He, Yuchen Yan, Dan Dong, Yihong Bao, Ting Luo, Qihe Chen and Jinling Wang
J. Fungi 2022, 8(1), 17; https://doi.org/10.3390/jof8010017 - 27 Dec 2021
Cited by 10 | Viewed by 2821
Abstract
Our previous study isolated a novel Issatchenkia terricola WJL-G4, which exhibited a potent capability of reducing citric acid. In the current study, I. terricola WJL-G4 was applied to decrease the content of citric acid in red raspberry juice, followed by the [...] Read more.
Our previous study isolated a novel Issatchenkia terricola WJL-G4, which exhibited a potent capability of reducing citric acid. In the current study, I. terricola WJL-G4 was applied to decrease the content of citric acid in red raspberry juice, followed by the red raspberry wine preparation by Saccharomyces cerevisiae fermentation, aiming to investigate the influence of I. terricola WJL-G4 on the physicochemical properties, organic acids, phenolic compounds and antioxidant activities during red raspberry wine processing. The results showed that after being treated with I. terricola WJL-G4, the citric acid contents in red raspberry juice decreased from 19.14 ± 0.09 to 6.62 ± 0.14 g/L, which was further declined to 5.59 ± 0.22 g/L after S. cerevisiae fermentation. Parameters related to CIELab color space, including L*, a*, b*, h°, and ∆E* exhibited the highest levels in samples after I. terricola WJL-G4 fermentation. Compared to the red raspberry wine pretreated without deacidification (RJO-SC), wine pretreated by I. terricola WJL-G4 (RJIT-SC) exhibited significantly decreased contents of gallic acid, cryptochlorogenic acid, and arbutin, while significantly increased contents of caffeic acid, sinapic acid, raspberry ketone, quercitrin, quercetin, baicalein, and rutin. Furthermore, the antioxidant activities including DPPH· and ABTS+· radical scavenging were enhanced in RJIT-SC group as compared to RJO-SC. This work revealed that I. terricola WJL-G4 had a great potential in red raspberry wine fermentation. Full article
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 5701 KiB  
Review
Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance
by Thaís P. Mello, Iuri C. Barcellos, Ana Carolina Aor, Marta H. Branquinha and André L. S. Santos
J. Fungi 2022, 8(11), 1172; https://doi.org/10.3390/jof8111172 - 7 Nov 2022
Cited by 4 | Viewed by 1917
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms [...] Read more.
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments. Full article
Show Figures

Figure 1

10 pages, 281 KiB  
Review
Fungal-Derived Mycoprotein and Health across the Lifespan: A Narrative Review
by Emma Derbyshire
J. Fungi 2022, 8(7), 653; https://doi.org/10.3390/jof8070653 - 22 Jun 2022
Cited by 5 | Viewed by 3797
Abstract
Mycoprotein is a filamentous fungal protein that was first identified in the 1960s. A growing number of publications have investigated inter-relationships between mycoprotein intakes and aspects of human health. A narrative review was undertaken focusing on evidence from randomized controlled trials, clinical trials, [...] Read more.
Mycoprotein is a filamentous fungal protein that was first identified in the 1960s. A growing number of publications have investigated inter-relationships between mycoprotein intakes and aspects of human health. A narrative review was undertaken focusing on evidence from randomized controlled trials, clinical trials, intervention, and observational studies. Fifteen key publications were identified and undertaken in early/young adulthood, adulthood (mid-life) or older/advanced age. Main findings showed that fungal mycoprotein could contribute to an array of health benefits across the lifespan including improved lipid profiles, glycaemic markers, dietary fibre intakes, satiety effects and muscle/myofibrillar protein synthesis. Continued research is needed which would be worthwhile at both ends of the lifespan spectrum and specific population sub-groups. Full article
19 pages, 640 KiB  
Review
Mycotherapy: Potential of Fungal Bioactives for the Treatment of Mental Health Disorders and Morbidities of Chronic Pain
by Elaine Meade, Sarah Hehir, Neil Rowan and Mary Garvey
J. Fungi 2022, 8(3), 290; https://doi.org/10.3390/jof8030290 - 11 Mar 2022
Cited by 9 | Viewed by 9604
Abstract
Mushrooms have been used as traditional medicine for millennia, fungi are the main natural source of psychedelic compounds. There is now increasing interest in using fungal active compounds such as psychedelics for alleviating symptoms of mental health disorders including major depressive disorder, anxiety, [...] Read more.
Mushrooms have been used as traditional medicine for millennia, fungi are the main natural source of psychedelic compounds. There is now increasing interest in using fungal active compounds such as psychedelics for alleviating symptoms of mental health disorders including major depressive disorder, anxiety, and addiction. The anxiolytic, antidepressant and anti-addictive effect of these compounds has raised awareness stimulating neuropharmacological investigations. Micro-dosing or acute dosing with psychedelics including Lysergic acid diethylamide (LSD) and psilocybin may offer patients treatment options which are unmet by current therapeutic options. Studies suggest that either dosing regimen produces a rapid and long-lasting effect on the patient post administration with a good safety profile. Psychedelics can also modulate immune systems including pro-inflammatory cytokines suggesting a potential in the treatment of auto-immune and other chronic pain conditions. This literature review aims to explore recent evidence relating to the application of fungal bioactives in treating chronic mental health and chronic pain morbidities. Full article
Show Figures

Graphical abstract

94 pages, 21038 KiB  
Review
Fungal Endophytes: A Potential Source of Antibacterial Compounds
by Sunil K. Deshmukh, Laurent Dufossé, Hemraj Chhipa, Sanjai Saxena, Girish B. Mahajan and Manish Kumar Gupta
J. Fungi 2022, 8(2), 164; https://doi.org/10.3390/jof8020164 - 8 Feb 2022
Cited by 50 | Viewed by 7584
Abstract
Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) [...] Read more.
Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) is strengthening the pathogenicity and virulence of infectious microbes. Endophytes have shown expression of various new many bioactive compounds with significant biological activities. Specifically, in endophytic fungi, bioactive metabolites with unique skeletons have been identified which could be helpful in the prevention of increasing antimicrobial resistance. The major classes of metabolites reported include anthraquinone, sesquiterpenoid, chromone, xanthone, phenols, quinones, quinolone, piperazine, coumarins and cyclic peptides. In the present review, we reported 451 bioactive metabolites isolated from various groups of endophytic fungi from January 2015 to April 2021 along with their antibacterial profiling, chemical structures and mode of action. In addition, we also discussed various methods including epigenetic modifications, co-culture, and OSMAC to induce silent gene clusters for the production of noble bioactive compounds in endophytic fungi. Full article
Show Figures

Figure 1

14 pages, 782 KiB  
Review
Recent Developments in Metabolomics Studies of Endophytic Fungi
by Kashvintha Nagarajan, Baharudin Ibrahim, Abdulkader Ahmad Bawadikji, Jun-Wei Lim, Woei-Yenn Tong, Chean-Ring Leong, Kooi Yeong Khaw and Wen-Nee Tan
J. Fungi 2022, 8(1), 28; https://doi.org/10.3390/jof8010028 - 29 Dec 2021
Cited by 25 | Viewed by 3821
Abstract
Endophytic fungi are microorganisms that colonize living plants’ tissues without causing any harm. They are known as a natural source of bioactive metabolites with diverse pharmacological functions. Many structurally different chemical metabolites were isolated from endophytic fungi. Recently, the increasing trends in human [...] Read more.
Endophytic fungi are microorganisms that colonize living plants’ tissues without causing any harm. They are known as a natural source of bioactive metabolites with diverse pharmacological functions. Many structurally different chemical metabolites were isolated from endophytic fungi. Recently, the increasing trends in human health problems and diseases have escalated the search for bioactive metabolites from endophytic fungi. The conventional bioassay-guided study is known as laborious due to chemical complexity. Thus, metabolomics studies have attracted extensive research interest owing to their potential in dealing with a vast number of metabolites. Metabolomics coupled with advanced analytical tools provides a comprehensive insight into systems biology. Despite its wide scientific attention, endophytic fungi metabolomics are relatively unexploited. This review highlights the recent developments in metabolomics studies of endophytic fungi in obtaining the global metabolites picture. Full article
Show Figures

Figure 1

26 pages, 2424 KiB  
Review
A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges
by Hamada El-Gendi, Ahmed K. Saleh, Raied Badierah, Elrashdy M. Redwan, Yousra A. El-Maradny and Esmail M. El-Fakharany
J. Fungi 2022, 8(1), 23; https://doi.org/10.3390/jof8010023 - 28 Dec 2021
Cited by 108 | Viewed by 11665
Abstract
Enzymes have played a crucial role in mankind’s challenges to use different types of biological systems for a diversity of applications. They are proteins that break down and convert complicated compounds to produce simple products. Fungal enzymes are compatible, efficient, and proper products [...] Read more.
Enzymes have played a crucial role in mankind’s challenges to use different types of biological systems for a diversity of applications. They are proteins that break down and convert complicated compounds to produce simple products. Fungal enzymes are compatible, efficient, and proper products for many uses in medicinal requests, industrial processing, bioremediation purposes, and agricultural applications. Fungal enzymes have appropriate stability to give manufactured products suitable shelf life, affordable cost, and approved demands. Fungal enzymes have been used from ancient times to today in many industries, including baking, brewing, cheese making, antibiotics production, and commodities manufacturing, such as linen and leather. Furthermore, they also are used in other fields such as paper production, detergent, the textile industry, and in drinks and food technology in products manufacturing ranging from tea and coffee to fruit juice and wine. Recently, fungi have been used for the production of more than 50% of the needed enzymes. Fungi can produce different types of enzymes extracellularly, which gives a great chance for producing in large amounts with low cost and easy viability in purified forms using simple purification methods. In the present review, a comprehensive trial has been advanced to elaborate on the different types and structures of fungal enzymes as well as the current status of the uses of fungal enzymes in various applications. Full article
Show Figures

Graphical abstract

Back to TopTop